使用 LSTM 为网格交互式建筑进行负荷预测

IF 1 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC SAIEE Africa Research Journal Pub Date : 2024-03-03 DOI:10.23919/SAIEE.2024.10520212
Kyppy N. Simani;Yuval O. Genga;Yu-Chieh J. Yen
{"title":"使用 LSTM 为网格交互式建筑进行负荷预测","authors":"Kyppy N. Simani;Yuval O. Genga;Yu-Chieh J. Yen","doi":"10.23919/SAIEE.2024.10520212","DOIUrl":null,"url":null,"abstract":"Energy consumption from the residential sector forms a large portion of the electricity grid demand. The growing accessibility of residential load profile data presents an opportunity for improved residential load forecasting and the implementation of demand-side management (DSM) strategies. Machine learning is a tool well-suited for predicting stochastic processes, such as residential power usage due to human behavior. Long short-term memory (LSTM) recurrent neural networks are especially suited for predicting time-series data such as electrical load profiles. This paper investigates the impact of LSTM hyperparameters to the predictive performance of models, which include the tradeoffs associated with training data size, horizon ratios, model fidelity, prediction horizon and computational intensity. This paper provides a framework to evaluate the choice of LSTM hyperparameters for understanding trade-offs in a practical application of load profile predictions for the context of Grid-interactive Efficient Buildings (GEBs).","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":"115 2","pages":"42-47"},"PeriodicalIF":1.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520212","citationCount":"0","resultStr":"{\"title\":\"Using LSTM to Perform Load Predictions for Grid-Interactive Buildings\",\"authors\":\"Kyppy N. Simani;Yuval O. Genga;Yu-Chieh J. Yen\",\"doi\":\"10.23919/SAIEE.2024.10520212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy consumption from the residential sector forms a large portion of the electricity grid demand. The growing accessibility of residential load profile data presents an opportunity for improved residential load forecasting and the implementation of demand-side management (DSM) strategies. Machine learning is a tool well-suited for predicting stochastic processes, such as residential power usage due to human behavior. Long short-term memory (LSTM) recurrent neural networks are especially suited for predicting time-series data such as electrical load profiles. This paper investigates the impact of LSTM hyperparameters to the predictive performance of models, which include the tradeoffs associated with training data size, horizon ratios, model fidelity, prediction horizon and computational intensity. This paper provides a framework to evaluate the choice of LSTM hyperparameters for understanding trade-offs in a practical application of load profile predictions for the context of Grid-interactive Efficient Buildings (GEBs).\",\"PeriodicalId\":42493,\"journal\":{\"name\":\"SAIEE Africa Research Journal\",\"volume\":\"115 2\",\"pages\":\"42-47\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520212\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAIEE Africa Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10520212/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAIEE Africa Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10520212/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

住宅部门的能源消耗占电网需求的很大一部分。越来越多的居民负荷曲线数据为改进居民负荷预测和实施需求侧管理 (DSM) 策略提供了机会。机器学习是一种非常适合预测随机过程的工具,例如由人类行为导致的住宅用电情况。长短期记忆 (LSTM) 循环神经网络尤其适合预测时间序列数据,如电力负荷曲线。本文研究了 LSTM 超参数对模型预测性能的影响,其中包括与训练数据大小、水平比率、模型保真度、预测水平和计算强度相关的权衡。本文提供了一个框架,用于评估 LSTM 超参数的选择,以了解电网交互式高效楼宇(GEB)负载曲线预测实际应用中的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using LSTM to Perform Load Predictions for Grid-Interactive Buildings
Energy consumption from the residential sector forms a large portion of the electricity grid demand. The growing accessibility of residential load profile data presents an opportunity for improved residential load forecasting and the implementation of demand-side management (DSM) strategies. Machine learning is a tool well-suited for predicting stochastic processes, such as residential power usage due to human behavior. Long short-term memory (LSTM) recurrent neural networks are especially suited for predicting time-series data such as electrical load profiles. This paper investigates the impact of LSTM hyperparameters to the predictive performance of models, which include the tradeoffs associated with training data size, horizon ratios, model fidelity, prediction horizon and computational intensity. This paper provides a framework to evaluate the choice of LSTM hyperparameters for understanding trade-offs in a practical application of load profile predictions for the context of Grid-interactive Efficient Buildings (GEBs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SAIEE Africa Research Journal
SAIEE Africa Research Journal ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
29
期刊最新文献
Table of contents Front cover Notes Back cover Advancements in electrical marine propulsion technologies: A comprehensive overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1