具有 Wong-Zakai 噪声的二维金兹堡-兰道方程随机吸引子的二元鲁棒性

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Stochastics and Dynamics Pub Date : 2024-04-30 DOI:10.1142/s0219493724500102
Yangrong Li, Fengling Wang
{"title":"具有 Wong-Zakai 噪声的二维金兹堡-兰道方程随机吸引子的二元鲁棒性","authors":"Yangrong Li, Fengling Wang","doi":"10.1142/s0219493724500102","DOIUrl":null,"url":null,"abstract":"<p>Consider a non-autonomous 2D-Ginzburg–Landau equation driven by Wong–Zakai noise or white noise, respectively, we first show the existence of pullback random attractors, which are random compact attracting sets indexed by two parameters: the size of Wong–Zakai noise and the current time. We then establish the robustness of the attractors when both parameters are simultaneously convergent. An essential difficulty arises from the possible loss of the convergence of solutions and only part convergence of solutions is available, which is a new phenomenon for 2D-GL equation distinguishing with the 1D case. So, by using <i>part</i> joint-convergence, regularity, eventual local-compactness and recurrence, we establish a binary robustness theorem of pullback random attractors and apply it to the weakly dissipative stochastic equation.</p>","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary robustness of random attractors for 2D-Ginzburg–Landau equations with Wong–Zakai noise\",\"authors\":\"Yangrong Li, Fengling Wang\",\"doi\":\"10.1142/s0219493724500102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider a non-autonomous 2D-Ginzburg–Landau equation driven by Wong–Zakai noise or white noise, respectively, we first show the existence of pullback random attractors, which are random compact attracting sets indexed by two parameters: the size of Wong–Zakai noise and the current time. We then establish the robustness of the attractors when both parameters are simultaneously convergent. An essential difficulty arises from the possible loss of the convergence of solutions and only part convergence of solutions is available, which is a new phenomenon for 2D-GL equation distinguishing with the 1D case. So, by using <i>part</i> joint-convergence, regularity, eventual local-compactness and recurrence, we establish a binary robustness theorem of pullback random attractors and apply it to the weakly dissipative stochastic equation.</p>\",\"PeriodicalId\":51170,\"journal\":{\"name\":\"Stochastics and Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219493724500102\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493724500102","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

考虑分别由黄扎凯噪声或白噪声驱动的非自治二维-金兹堡-朗道方程,我们首先证明了回拉随机吸引子的存在,它们是由两个参数(黄扎凯噪声大小和当前时间)索引的随机紧凑吸引集。然后,我们确定了当两个参数同时收敛时吸引子的稳健性。一个基本的困难来自于可能会失去解的收敛性,而只有部分解收敛,这是二维-GL方程区别于一维情况的一个新现象。因此,我们利用部分联合收敛性、正则性、最终局部紧凑性和递归性,建立了回拉随机吸引子的二元鲁棒性定理,并将其应用于弱耗散随机方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Binary robustness of random attractors for 2D-Ginzburg–Landau equations with Wong–Zakai noise

Consider a non-autonomous 2D-Ginzburg–Landau equation driven by Wong–Zakai noise or white noise, respectively, we first show the existence of pullback random attractors, which are random compact attracting sets indexed by two parameters: the size of Wong–Zakai noise and the current time. We then establish the robustness of the attractors when both parameters are simultaneously convergent. An essential difficulty arises from the possible loss of the convergence of solutions and only part convergence of solutions is available, which is a new phenomenon for 2D-GL equation distinguishing with the 1D case. So, by using part joint-convergence, regularity, eventual local-compactness and recurrence, we establish a binary robustness theorem of pullback random attractors and apply it to the weakly dissipative stochastic equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Dynamics
Stochastics and Dynamics 数学-统计学与概率论
CiteScore
1.70
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view. Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.
期刊最新文献
Quantum Synchronization for Stochastic Schrodinger-Lohe Model Stochastic Averaging Principle for Neutral Stochastic Functional Differential Equations Driven by G-Levy Process Viability for Impulsive Stochastic Differential Inclusions Driven by Fractional Brownian Motion Reflected stochastic differential equations driven by standard and fractional Brownian motion Dynamical behaviors of an impulsive stochastic neural field lattice model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1