神经递质通路如何影响神经影像表型?

Amir Ebneabbasi, Mortaza Afshani, Arman Seyed-Ahmadi, Varun Warrier, Richard A.I. Bethlehem, Timothy Rittman
{"title":"神经递质通路如何影响神经影像表型?","authors":"Amir Ebneabbasi, Mortaza Afshani, Arman Seyed-Ahmadi, Varun Warrier, Richard A.I. Bethlehem, Timothy Rittman","doi":"10.1101/2024.04.26.24305395","DOIUrl":null,"url":null,"abstract":"Neuroimaging could accurately reflect human behaviour in health and disease, but the mechanism by which image-derived phenotypes correspond to neurotransmitter systems remains uncertain. Prior studies have explored spatial correlations between neuroimaging phenotypes and positron emission tomography radiotracers. However, the influence of neurotransmitters goes beyond the receptors/transporters, influencing a wider array of intracellular components as pivotal parts of neurotransmitter pathways. Here, we used unsupervised learning to understand how the brain maps of healthy function (i.e., magnetoencephalography frequency-specific power) and abnormal structure (i.e., disorder-specific cortical thickness) are closely anchored to underlying neurotransmitter pathways assessed by gene expression data. To do this, we used large-scale datasets of the Human Connectome Project (HCP), Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) and Allen Human Brain Atlas (AHBA). We considered spatial and random gene null models to mitigate false positives. We replicate our analyses using different gene stability thresholds. This analytic approach paves the way for personalised medicine and advanced biomarkers.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Do Neurotransmitter Pathways Contribute to Neuroimaging Phenotypes?\",\"authors\":\"Amir Ebneabbasi, Mortaza Afshani, Arman Seyed-Ahmadi, Varun Warrier, Richard A.I. Bethlehem, Timothy Rittman\",\"doi\":\"10.1101/2024.04.26.24305395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuroimaging could accurately reflect human behaviour in health and disease, but the mechanism by which image-derived phenotypes correspond to neurotransmitter systems remains uncertain. Prior studies have explored spatial correlations between neuroimaging phenotypes and positron emission tomography radiotracers. However, the influence of neurotransmitters goes beyond the receptors/transporters, influencing a wider array of intracellular components as pivotal parts of neurotransmitter pathways. Here, we used unsupervised learning to understand how the brain maps of healthy function (i.e., magnetoencephalography frequency-specific power) and abnormal structure (i.e., disorder-specific cortical thickness) are closely anchored to underlying neurotransmitter pathways assessed by gene expression data. To do this, we used large-scale datasets of the Human Connectome Project (HCP), Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) and Allen Human Brain Atlas (AHBA). We considered spatial and random gene null models to mitigate false positives. We replicate our analyses using different gene stability thresholds. This analytic approach paves the way for personalised medicine and advanced biomarkers.\",\"PeriodicalId\":501358,\"journal\":{\"name\":\"medRxiv - Radiology and Imaging\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Radiology and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.04.26.24305395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.04.26.24305395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经成像可以准确反映人类在健康和疾病中的行为,但图像衍生表型与神经递质系统相对应的机制仍不确定。之前的研究已经探索了神经影像表型与正电子发射断层扫描放射性核素之间的空间相关性。然而,神经递质的影响并不局限于受体/转运体,它还会影响作为神经递质通路关键部分的一系列细胞内成分。在这里,我们利用无监督学习来了解健康功能(即脑磁图频率特异性功率)和异常结构(即失调特异性皮层厚度)的大脑图谱是如何与基因表达数据评估的潜在神经递质通路紧密联系在一起的。为此,我们使用了人类连接组计划(HCP)、通过元分析增强神经成像遗传学(ENIGMA)和艾伦人类脑图谱(AHBA)的大规模数据集。我们考虑了空间和随机基因空模型,以减少假阳性。我们使用不同的基因稳定性阈值进行了重复分析。这种分析方法为个性化医疗和高级生物标记铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How Do Neurotransmitter Pathways Contribute to Neuroimaging Phenotypes?
Neuroimaging could accurately reflect human behaviour in health and disease, but the mechanism by which image-derived phenotypes correspond to neurotransmitter systems remains uncertain. Prior studies have explored spatial correlations between neuroimaging phenotypes and positron emission tomography radiotracers. However, the influence of neurotransmitters goes beyond the receptors/transporters, influencing a wider array of intracellular components as pivotal parts of neurotransmitter pathways. Here, we used unsupervised learning to understand how the brain maps of healthy function (i.e., magnetoencephalography frequency-specific power) and abnormal structure (i.e., disorder-specific cortical thickness) are closely anchored to underlying neurotransmitter pathways assessed by gene expression data. To do this, we used large-scale datasets of the Human Connectome Project (HCP), Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) and Allen Human Brain Atlas (AHBA). We considered spatial and random gene null models to mitigate false positives. We replicate our analyses using different gene stability thresholds. This analytic approach paves the way for personalised medicine and advanced biomarkers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Auto-segmentation of hemi-diaphragms in free-breathing dynamic MRI of pediatric subjects with thoracic insufficiency syndrome Dynamic MR of muscle contraction during electrical muscle stimulation as a potential diagnostic tool for neuromuscular disease Deriving Imaging Biomarkers for Primary Central Nervous System Lymphoma Using Deep Learning Exploring subthreshold functional network alterations in women with phenylketonuria by higher criticism Beyond Algorithms: The Impact of Simplified CNN Models and Multifactorial Influences on Radiological Image Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1