{"title":"使用动态 CZT-SPECT 检测血清白蛋白与冠状动脉微血管功能障碍严重程度的关系","authors":"Shih-Chieh Chien, Shan-Ying Wang, Cheng-Ting Tsai, Yu-Chien Shiau, Yen-Wen Wu","doi":"10.1111/micc.12853","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>Both low serum albumin (SA) concentration and coronary microvascular dysfunction (CMD) are risk factors for the development of heart failure (HF). We hypothesized that SA concentration is associated with myocardial flow reserve (MFR) and implicated in pathophysiological mechanism of HF.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We retrospectively studied 454 patients undergoing dynamic cardiac cadmium-zinc-telluride myocardial perfusion imaging from April 2018 to February 2020. The population was categorized into three groups according to SA level (g/dL): Group 1: >4, Group 2: 3.5–4, and Group 3: <3.5. Myocardial blood flow (MBF) and myocardial flow reserve (MFR, defined as stress/rest MBF ratio) were compared.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The mean age of the whole cohort was 66.2 years, and 65.2% were men. As SA decreased, stress MBF (mL min<sup>−1</sup> g<sup>−1</sup>) and MFR decreased (MBF: 3.29 ± 1.03, MFR: 3.46 ± 1.33 in Group 1, MBF: 2.95 ± 1.13, MFR: 2.51 ± 0.93 in Group 2, and MBF: 2.64 ± 1.16, MFR: 1.90 ± 0.50 in Group 3), whereas rest MBF (mL min<sup>−1</sup> g<sup>−1</sup>) increased (MBF: 1.05 ± 0.42 in Group 1, 1.27 ± 0.56 in Group 2, and 1.41 ± 0.61 in Group 3). After adjusting for covariates, compared with Group 1, the odds ratios for impaired MFR (defined as MFR < 2.5) were 3.57 (95% CI: 2.32–5.48) for Group 2 and 34.9 (95% CI: 13.23–92.14) for Group 3. The results would be similar if only regional MFR were assessed. The risk prediction for CMD using SA was acceptable, with an AUC of 0.76.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Low SA concentration was associated with the severity of CMD in both global and regional MFR as well as MBF.</p>\n </section>\n </div>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":"31 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significant Association of Serum Albumin With the Severity of Coronary Microvascular Dysfunction Using Dynamic CZT-SPECT\",\"authors\":\"Shih-Chieh Chien, Shan-Ying Wang, Cheng-Ting Tsai, Yu-Chien Shiau, Yen-Wen Wu\",\"doi\":\"10.1111/micc.12853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>Both low serum albumin (SA) concentration and coronary microvascular dysfunction (CMD) are risk factors for the development of heart failure (HF). We hypothesized that SA concentration is associated with myocardial flow reserve (MFR) and implicated in pathophysiological mechanism of HF.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We retrospectively studied 454 patients undergoing dynamic cardiac cadmium-zinc-telluride myocardial perfusion imaging from April 2018 to February 2020. The population was categorized into three groups according to SA level (g/dL): Group 1: >4, Group 2: 3.5–4, and Group 3: <3.5. Myocardial blood flow (MBF) and myocardial flow reserve (MFR, defined as stress/rest MBF ratio) were compared.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The mean age of the whole cohort was 66.2 years, and 65.2% were men. As SA decreased, stress MBF (mL min<sup>−1</sup> g<sup>−1</sup>) and MFR decreased (MBF: 3.29 ± 1.03, MFR: 3.46 ± 1.33 in Group 1, MBF: 2.95 ± 1.13, MFR: 2.51 ± 0.93 in Group 2, and MBF: 2.64 ± 1.16, MFR: 1.90 ± 0.50 in Group 3), whereas rest MBF (mL min<sup>−1</sup> g<sup>−1</sup>) increased (MBF: 1.05 ± 0.42 in Group 1, 1.27 ± 0.56 in Group 2, and 1.41 ± 0.61 in Group 3). After adjusting for covariates, compared with Group 1, the odds ratios for impaired MFR (defined as MFR < 2.5) were 3.57 (95% CI: 2.32–5.48) for Group 2 and 34.9 (95% CI: 13.23–92.14) for Group 3. The results would be similar if only regional MFR were assessed. The risk prediction for CMD using SA was acceptable, with an AUC of 0.76.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Low SA concentration was associated with the severity of CMD in both global and regional MFR as well as MBF.</p>\\n </section>\\n </div>\",\"PeriodicalId\":18459,\"journal\":{\"name\":\"Microcirculation\",\"volume\":\"31 5\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microcirculation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/micc.12853\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microcirculation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/micc.12853","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Significant Association of Serum Albumin With the Severity of Coronary Microvascular Dysfunction Using Dynamic CZT-SPECT
Objective
Both low serum albumin (SA) concentration and coronary microvascular dysfunction (CMD) are risk factors for the development of heart failure (HF). We hypothesized that SA concentration is associated with myocardial flow reserve (MFR) and implicated in pathophysiological mechanism of HF.
Methods
We retrospectively studied 454 patients undergoing dynamic cardiac cadmium-zinc-telluride myocardial perfusion imaging from April 2018 to February 2020. The population was categorized into three groups according to SA level (g/dL): Group 1: >4, Group 2: 3.5–4, and Group 3: <3.5. Myocardial blood flow (MBF) and myocardial flow reserve (MFR, defined as stress/rest MBF ratio) were compared.
Results
The mean age of the whole cohort was 66.2 years, and 65.2% were men. As SA decreased, stress MBF (mL min−1 g−1) and MFR decreased (MBF: 3.29 ± 1.03, MFR: 3.46 ± 1.33 in Group 1, MBF: 2.95 ± 1.13, MFR: 2.51 ± 0.93 in Group 2, and MBF: 2.64 ± 1.16, MFR: 1.90 ± 0.50 in Group 3), whereas rest MBF (mL min−1 g−1) increased (MBF: 1.05 ± 0.42 in Group 1, 1.27 ± 0.56 in Group 2, and 1.41 ± 0.61 in Group 3). After adjusting for covariates, compared with Group 1, the odds ratios for impaired MFR (defined as MFR < 2.5) were 3.57 (95% CI: 2.32–5.48) for Group 2 and 34.9 (95% CI: 13.23–92.14) for Group 3. The results would be similar if only regional MFR were assessed. The risk prediction for CMD using SA was acceptable, with an AUC of 0.76.
Conclusion
Low SA concentration was associated with the severity of CMD in both global and regional MFR as well as MBF.
期刊介绍:
The journal features original contributions that are the result of investigations contributing significant new information relating to the vascular and lymphatic microcirculation addressed at the intact animal, organ, cellular, or molecular level. Papers describe applications of the methods of physiology, biophysics, bioengineering, genetics, cell biology, biochemistry, and molecular biology to problems in microcirculation.
Microcirculation also publishes state-of-the-art reviews that address frontier areas or new advances in technology in the fields of microcirculatory disease and function. Specific areas of interest include: Angiogenesis, growth and remodeling; Transport and exchange of gasses and solutes; Rheology and biorheology; Endothelial cell biology and metabolism; Interactions between endothelium, smooth muscle, parenchymal cells, leukocytes and platelets; Regulation of vasomotor tone; and Microvascular structures, imaging and morphometry. Papers also describe innovations in experimental techniques and instrumentation for studying all aspects of microcirculatory structure and function.