{"title":"具有状态和输入相关不确定性的非线性系统的同步鲁棒模型预测控制和状态估计","authors":"Farid Badfar, Ali Akbar Safavi","doi":"10.1002/asjc.3382","DOIUrl":null,"url":null,"abstract":"<p>The convergence and stability of uncertain nonlinear systems is a challenging problem in the nonlinear control area. Besides, in many practical cases, all states are not measurable and are affected by measurement noise. Based on this motivation, the first objective of this paper is to design a novel output feedback robust model predictive control approach for nonlinear systems with state- and input-dependent uncertainties and measurement noise. This approach combines state estimation and robust model predictive control (MPC) into one min–max optimization and by solving the optimization, these two tasks are performed simultaneously. The studied nonlinear system comprises a linear part, a nonlinear part, and a function that denotes the state- and input-dependent uncertainties. Therefore, the other objective is to reduce the computational complexity; thus, the system's nonlinear term and the aforementioned uncertainties are converted into additional disturbances. Subsequently, the optimization problem becomes a quadratic form, which leads to global convergence with the appropriate selection of objective function weights. Besides, this paper explores the convergence of the closed-loop system states and the sufficient synthesis conditions to guarantee input-to-state stability. The implementation on a numerical example and a CSTR process demonstrate the applicability and reliability of the proposed approach.</p>","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"26 6","pages":"3082-3101"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous robust model predictive control and state estimation for nonlinear systems with state- and input-dependent uncertainties\",\"authors\":\"Farid Badfar, Ali Akbar Safavi\",\"doi\":\"10.1002/asjc.3382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The convergence and stability of uncertain nonlinear systems is a challenging problem in the nonlinear control area. Besides, in many practical cases, all states are not measurable and are affected by measurement noise. Based on this motivation, the first objective of this paper is to design a novel output feedback robust model predictive control approach for nonlinear systems with state- and input-dependent uncertainties and measurement noise. This approach combines state estimation and robust model predictive control (MPC) into one min–max optimization and by solving the optimization, these two tasks are performed simultaneously. The studied nonlinear system comprises a linear part, a nonlinear part, and a function that denotes the state- and input-dependent uncertainties. Therefore, the other objective is to reduce the computational complexity; thus, the system's nonlinear term and the aforementioned uncertainties are converted into additional disturbances. Subsequently, the optimization problem becomes a quadratic form, which leads to global convergence with the appropriate selection of objective function weights. Besides, this paper explores the convergence of the closed-loop system states and the sufficient synthesis conditions to guarantee input-to-state stability. The implementation on a numerical example and a CSTR process demonstrate the applicability and reliability of the proposed approach.</p>\",\"PeriodicalId\":55453,\"journal\":{\"name\":\"Asian Journal of Control\",\"volume\":\"26 6\",\"pages\":\"3082-3101\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asjc.3382\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asjc.3382","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Simultaneous robust model predictive control and state estimation for nonlinear systems with state- and input-dependent uncertainties
The convergence and stability of uncertain nonlinear systems is a challenging problem in the nonlinear control area. Besides, in many practical cases, all states are not measurable and are affected by measurement noise. Based on this motivation, the first objective of this paper is to design a novel output feedback robust model predictive control approach for nonlinear systems with state- and input-dependent uncertainties and measurement noise. This approach combines state estimation and robust model predictive control (MPC) into one min–max optimization and by solving the optimization, these two tasks are performed simultaneously. The studied nonlinear system comprises a linear part, a nonlinear part, and a function that denotes the state- and input-dependent uncertainties. Therefore, the other objective is to reduce the computational complexity; thus, the system's nonlinear term and the aforementioned uncertainties are converted into additional disturbances. Subsequently, the optimization problem becomes a quadratic form, which leads to global convergence with the appropriate selection of objective function weights. Besides, this paper explores the convergence of the closed-loop system states and the sufficient synthesis conditions to guarantee input-to-state stability. The implementation on a numerical example and a CSTR process demonstrate the applicability and reliability of the proposed approach.
期刊介绍:
The Asian Journal of Control, an Asian Control Association (ACA) and Chinese Automatic Control Society (CACS) affiliated journal, is the first international journal originating from the Asia Pacific region. The Asian Journal of Control publishes papers on original theoretical and practical research and developments in the areas of control, involving all facets of control theory and its application.
Published six times a year, the Journal aims to be a key platform for control communities throughout the world.
The Journal provides a forum where control researchers and practitioners can exchange knowledge and experiences on the latest advances in the control areas, and plays an educational role for students and experienced researchers in other disciplines interested in this continually growing field. The scope of the journal is extensive.
Topics include:
The theory and design of control systems and components, encompassing:
Robust and distributed control using geometric, optimal, stochastic and nonlinear methods
Game theory and state estimation
Adaptive control, including neural networks, learning, parameter estimation
and system fault detection
Artificial intelligence, fuzzy and expert systems
Hierarchical and man-machine systems
All parts of systems engineering which consider the reliability of components and systems
Emerging application areas, such as:
Robotics
Mechatronics
Computers for computer-aided design, manufacturing, and control of
various industrial processes
Space vehicles and aircraft, ships, and traffic
Biomedical systems
National economies
Power systems
Agriculture
Natural resources.