轴向功能分级重柱的稳定性分析

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES Mechanics of Composite Materials Pub Date : 2024-04-29 DOI:10.1007/s11029-024-10190-6
B. K. Lee, J. K. Lee
{"title":"轴向功能分级重柱的稳定性分析","authors":"B. K. Lee, J. K. Lee","doi":"10.1007/s11029-024-10190-6","DOIUrl":null,"url":null,"abstract":"<p>The stability of axially functionally graded (AFG) heavy columns was analyzed. Consideration in stability analysis of the column is given to the free vibration and bucking problems. The mass density and Young’s modulus of the AFG heavy column vary along the column axis through a power-law function. Unified modeling of the differential equations with the associated boundary conditions governing the deformed shape of the free vibrations and buckling of the column was developed. Using a combination of direct numerical integration method and numerical solution method of nonlinear equation, differential equations were solved to calculate the natural frequency and the critical buckling load. Calculation results for the natural frequency and buckling load compare well with the FEM results. As a result of numerical experiments, the effects of material and geometric properties on the natural frequency and the buckling load were reported and discussed in detail.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"62 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Analysis of Axially Functionally Graded Heavy Column\",\"authors\":\"B. K. Lee, J. K. Lee\",\"doi\":\"10.1007/s11029-024-10190-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The stability of axially functionally graded (AFG) heavy columns was analyzed. Consideration in stability analysis of the column is given to the free vibration and bucking problems. The mass density and Young’s modulus of the AFG heavy column vary along the column axis through a power-law function. Unified modeling of the differential equations with the associated boundary conditions governing the deformed shape of the free vibrations and buckling of the column was developed. Using a combination of direct numerical integration method and numerical solution method of nonlinear equation, differential equations were solved to calculate the natural frequency and the critical buckling load. Calculation results for the natural frequency and buckling load compare well with the FEM results. As a result of numerical experiments, the effects of material and geometric properties on the natural frequency and the buckling load were reported and discussed in detail.</p>\",\"PeriodicalId\":18308,\"journal\":{\"name\":\"Mechanics of Composite Materials\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11029-024-10190-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-024-10190-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

分析了轴向功能分级(AFG)重柱的稳定性。柱稳定性分析考虑了自由振动和降压问题。AFG 重柱的质量密度和杨氏模量通过幂律函数沿柱轴变化。研究建立了微分方程的统一模型,并附带了控制自由振动变形和支柱屈曲的相关边界条件。采用直接数值积分法和非线性方程数值求解法相结合的方法,求解了微分方程,计算出了固有频率和临界屈曲载荷。固有频率和屈曲载荷的计算结果与有限元计算结果对比良好。数值实验结果详细报告和讨论了材料和几何特性对固有频率和屈曲载荷的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stability Analysis of Axially Functionally Graded Heavy Column

The stability of axially functionally graded (AFG) heavy columns was analyzed. Consideration in stability analysis of the column is given to the free vibration and bucking problems. The mass density and Young’s modulus of the AFG heavy column vary along the column axis through a power-law function. Unified modeling of the differential equations with the associated boundary conditions governing the deformed shape of the free vibrations and buckling of the column was developed. Using a combination of direct numerical integration method and numerical solution method of nonlinear equation, differential equations were solved to calculate the natural frequency and the critical buckling load. Calculation results for the natural frequency and buckling load compare well with the FEM results. As a result of numerical experiments, the effects of material and geometric properties on the natural frequency and the buckling load were reported and discussed in detail.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Composite Materials
Mechanics of Composite Materials 工程技术-材料科学:复合
CiteScore
2.90
自引率
17.60%
发文量
73
审稿时长
12 months
期刊介绍: Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to: damage, failure, fatigue, and long-term strength; methods of optimum design of materials and structures; prediction of long-term properties and aging problems; nondestructive testing; mechanical aspects of technology; mechanics of nanocomposites; mechanics of biocomposites; composites in aerospace and wind-power engineering; composites in civil engineering and infrastructure and other composites applications.
期刊最新文献
Analysis of Free Vibration and Low-Velocity Impact Response on Sandwich Cylindrical Shells Containing Fluid Mechanical Properties-Based Reliability Optimization Design of GFRP Culvert Dual-Phase Lag Model for a Solid Cylinder Made of Two Different Thermoelastic Materials Free Vibration Analysis of Functionally Graded Nano Graphene Composite Sandwich Plates Resting on a Winkler-Pasternak Foundation Multiphysics Homogenization and Localization of Wavy Brick-And-Mortar Architectures with Piezoelectric Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1