{"title":"利用有限样本进行跨领域故障诊断的多尺度元学习网络","authors":"Yu Wang, Shujie Liu","doi":"10.1007/s10845-024-02365-8","DOIUrl":null,"url":null,"abstract":"<p>In recent years, data-driven machine learning models have achieved good results in fault diagnosis of rotating machinery under different working conditions. However, in practical applications, the lack of fault samples under various working conditions makes the training of models difficult. In this paper, a multi scale meta-learning network (MS-MLN) that can be applied to few-shot cross-domain diagnosis of rotating machinery is proposed to address this issue. MS-MLN consists of a multi scale feature encoder, a metric embedding process and a classifier. The model is trained by an episodic metric meta-learning strategy under few-shot and domain shift scenarios. Extensive experiments are carried out to verify the effectiveness of MS-MLN, results show that MS-MLN outperforms most benchmark models in bearing and wind turbine gearbox fault diagnosis. Visualization is applied to the model to study its effectiveness. Ablation study is also conducted to discuss the impact of different parts of the model’s feature encoder on its performance in detail.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"88 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi scale meta-learning network for cross domain fault diagnosis with limited samples\",\"authors\":\"Yu Wang, Shujie Liu\",\"doi\":\"10.1007/s10845-024-02365-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, data-driven machine learning models have achieved good results in fault diagnosis of rotating machinery under different working conditions. However, in practical applications, the lack of fault samples under various working conditions makes the training of models difficult. In this paper, a multi scale meta-learning network (MS-MLN) that can be applied to few-shot cross-domain diagnosis of rotating machinery is proposed to address this issue. MS-MLN consists of a multi scale feature encoder, a metric embedding process and a classifier. The model is trained by an episodic metric meta-learning strategy under few-shot and domain shift scenarios. Extensive experiments are carried out to verify the effectiveness of MS-MLN, results show that MS-MLN outperforms most benchmark models in bearing and wind turbine gearbox fault diagnosis. Visualization is applied to the model to study its effectiveness. Ablation study is also conducted to discuss the impact of different parts of the model’s feature encoder on its performance in detail.</p>\",\"PeriodicalId\":16193,\"journal\":{\"name\":\"Journal of Intelligent Manufacturing\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10845-024-02365-8\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02365-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A multi scale meta-learning network for cross domain fault diagnosis with limited samples
In recent years, data-driven machine learning models have achieved good results in fault diagnosis of rotating machinery under different working conditions. However, in practical applications, the lack of fault samples under various working conditions makes the training of models difficult. In this paper, a multi scale meta-learning network (MS-MLN) that can be applied to few-shot cross-domain diagnosis of rotating machinery is proposed to address this issue. MS-MLN consists of a multi scale feature encoder, a metric embedding process and a classifier. The model is trained by an episodic metric meta-learning strategy under few-shot and domain shift scenarios. Extensive experiments are carried out to verify the effectiveness of MS-MLN, results show that MS-MLN outperforms most benchmark models in bearing and wind turbine gearbox fault diagnosis. Visualization is applied to the model to study its effectiveness. Ablation study is also conducted to discuss the impact of different parts of the model’s feature encoder on its performance in detail.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.