通过大豆分离蛋白微凝胶颗粒和黄原胶之间的 pH 值诱导静电相互作用稳定水包油乳液凝胶

IF 1.9 4区 农林科学 Q3 CHEMISTRY, APPLIED Journal of the American Oil Chemists Society Pub Date : 2024-04-28 DOI:10.1002/aocs.12845
Jixian Mao, Lujie Cui, Zong Meng
{"title":"通过大豆分离蛋白微凝胶颗粒和黄原胶之间的 pH 值诱导静电相互作用稳定水包油乳液凝胶","authors":"Jixian Mao,&nbsp;Lujie Cui,&nbsp;Zong Meng","doi":"10.1002/aocs.12845","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a colloidal dispersion at different pH containing soybean protein isolate (SPI) microgel particles and xanthan gum (XG) was used as the aqueous phase to prepare O/W emulsion gels with soybean oil. Properties of SPI microgel particles were analyzed by particle size, Zeta-potential, secondary structure, optical contact angle, dynamic interface tension, and SEM testing, respectively. Results showed that pH impact microgels particle size and Zeta-potential and their emulsification properties. It turned out that only at pH 3, 6, 7, and 8 can construct emulsions successfully. Based on a comparison of microstructure and macroscopic properties, it was found that at pH 3, proteins and polysaccharides were oppositely charged, electrostatic attraction between them reduced proteins located at the interface, and was more likely to form larger droplets, resulting in a bimodal droplet distribution and larger sizes. Conversely, at the pH of 6, 7, and 8, respectively, emulsions exhibited a uniform droplet distribution and more solid-like rheological properties due to the powerful electrostatic repulsion between SPI and XG. Also, emulsion gels co-stabilized with proteins and polysaccharides under electrostatic repulsion conditions showed an ideal recovery ability. Overall, this work would be beneficial to the use of emulsion gels in fat substitute systems.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 11","pages":"1287-1298"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization of oil-in-water emulsion gels by pH-induced electrostatic interactions between soybean protein isolate microgel particles and xanthan gum\",\"authors\":\"Jixian Mao,&nbsp;Lujie Cui,&nbsp;Zong Meng\",\"doi\":\"10.1002/aocs.12845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, a colloidal dispersion at different pH containing soybean protein isolate (SPI) microgel particles and xanthan gum (XG) was used as the aqueous phase to prepare O/W emulsion gels with soybean oil. Properties of SPI microgel particles were analyzed by particle size, Zeta-potential, secondary structure, optical contact angle, dynamic interface tension, and SEM testing, respectively. Results showed that pH impact microgels particle size and Zeta-potential and their emulsification properties. It turned out that only at pH 3, 6, 7, and 8 can construct emulsions successfully. Based on a comparison of microstructure and macroscopic properties, it was found that at pH 3, proteins and polysaccharides were oppositely charged, electrostatic attraction between them reduced proteins located at the interface, and was more likely to form larger droplets, resulting in a bimodal droplet distribution and larger sizes. Conversely, at the pH of 6, 7, and 8, respectively, emulsions exhibited a uniform droplet distribution and more solid-like rheological properties due to the powerful electrostatic repulsion between SPI and XG. Also, emulsion gels co-stabilized with proteins and polysaccharides under electrostatic repulsion conditions showed an ideal recovery ability. Overall, this work would be beneficial to the use of emulsion gels in fat substitute systems.</p>\",\"PeriodicalId\":17182,\"journal\":{\"name\":\"Journal of the American Oil Chemists Society\",\"volume\":\"101 11\",\"pages\":\"1287-1298\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Oil Chemists Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12845\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12845","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文以含有大豆分离蛋白(SPI)微凝胶颗粒和黄原胶(XG)的不同 pH 值的胶体分散液为水相,制备了大豆油的 O/W 型乳液凝胶。分别通过粒度、Zeta电位、二级结构、光学接触角、动态界面张力和扫描电镜测试分析了SPI微凝胶颗粒的特性。结果表明,pH 值会影响微凝胶的粒径和 Zeta 电位及其乳化性能。结果表明,只有在 pH 值为 3、6、7 和 8 时才能成功构建乳液。根据微观结构和宏观特性的比较发现,在 pH 值为 3 时,蛋白质和多糖带相反的电荷,它们之间的静电吸引使位于界面处的蛋白质减少,更容易形成较大的液滴,从而形成双峰液滴分布和较大的粒径。相反,在 pH 值分别为 6、7 和 8 时,由于 SPI 和 XG 之间强大的静电排斥作用,乳液呈现出均匀的液滴分布,流变特性更类似于固体。此外,在静电排斥条件下与蛋白质和多糖共同稳定的乳液凝胶显示出理想的回收能力。总之,这项工作将有利于乳液凝胶在脂肪替代物体系中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stabilization of oil-in-water emulsion gels by pH-induced electrostatic interactions between soybean protein isolate microgel particles and xanthan gum

In this paper, a colloidal dispersion at different pH containing soybean protein isolate (SPI) microgel particles and xanthan gum (XG) was used as the aqueous phase to prepare O/W emulsion gels with soybean oil. Properties of SPI microgel particles were analyzed by particle size, Zeta-potential, secondary structure, optical contact angle, dynamic interface tension, and SEM testing, respectively. Results showed that pH impact microgels particle size and Zeta-potential and their emulsification properties. It turned out that only at pH 3, 6, 7, and 8 can construct emulsions successfully. Based on a comparison of microstructure and macroscopic properties, it was found that at pH 3, proteins and polysaccharides were oppositely charged, electrostatic attraction between them reduced proteins located at the interface, and was more likely to form larger droplets, resulting in a bimodal droplet distribution and larger sizes. Conversely, at the pH of 6, 7, and 8, respectively, emulsions exhibited a uniform droplet distribution and more solid-like rheological properties due to the powerful electrostatic repulsion between SPI and XG. Also, emulsion gels co-stabilized with proteins and polysaccharides under electrostatic repulsion conditions showed an ideal recovery ability. Overall, this work would be beneficial to the use of emulsion gels in fat substitute systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
95
审稿时长
2.4 months
期刊介绍: The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate. JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of year­to­year, environmental, and/ or cultivar variations through use of appropriate statistical analyses.
期刊最新文献
Issue Information Issue Information Microfluidization outperforms homogenization: Optimizing stability and bioaccessibility in krill oil emulsions Issue Information JAOCS special issue on advancement in plant protein-based emulsions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1