Ahsan Ali, James J. Brannick, Karsten Kahl, Oliver A. Krzysik, Jacob B. Schroder, Ben S. Southworth
{"title":"平流扩散问题的受约束局部近似理想限制","authors":"Ahsan Ali, James J. Brannick, Karsten Kahl, Oliver A. Krzysik, Jacob B. Schroder, Ben S. Southworth","doi":"10.1137/23m1583442","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Ahead of Print. <br/> Abstract. This paper focuses on developing a reduction-based algebraic multigrid (AMG) method that is suitable for solving general (non)symmetric linear systems and is naturally robust from pure advection to pure diffusion. Initial motivation comes from a new reduction-based AMG approach, [math] (local approximate ideal restriction), that was developed for solving advection-dominated problems. Though this new solver is very effective in the advection-dominated regime, its performance degrades in cases where diffusion becomes dominant. This is consistent with the fact that in general, reduction-based AMG methods tend to suffer from growth in complexity and/or convergence rates as the problem size is increased, especially for diffusion-dominated problems in two or three dimensions. Motivated by the success of [math] in the advective regime, our aim in this paper is to generalize the AIR framework with the goal of improving the performance of the solver in diffusion-dominated regimes. To do so, we propose a novel way to combine mode constraints as used commonly in energy-minimization AMG methods with the local approximation of ideal operators used in [math]. The resulting constrained [math] algorithm is able to achieve fast scalable convergence on advective and diffusive problems. In addition, it is able to achieve standard low complexity hierarchies in the diffusive regime through aggressive coarsening, something that was previously difficult for reduction-based methods.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"17 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constrained Local Approximate Ideal Restriction for Advection-Diffusion Problems\",\"authors\":\"Ahsan Ali, James J. Brannick, Karsten Kahl, Oliver A. Krzysik, Jacob B. Schroder, Ben S. Southworth\",\"doi\":\"10.1137/23m1583442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Ahead of Print. <br/> Abstract. This paper focuses on developing a reduction-based algebraic multigrid (AMG) method that is suitable for solving general (non)symmetric linear systems and is naturally robust from pure advection to pure diffusion. Initial motivation comes from a new reduction-based AMG approach, [math] (local approximate ideal restriction), that was developed for solving advection-dominated problems. Though this new solver is very effective in the advection-dominated regime, its performance degrades in cases where diffusion becomes dominant. This is consistent with the fact that in general, reduction-based AMG methods tend to suffer from growth in complexity and/or convergence rates as the problem size is increased, especially for diffusion-dominated problems in two or three dimensions. Motivated by the success of [math] in the advective regime, our aim in this paper is to generalize the AIR framework with the goal of improving the performance of the solver in diffusion-dominated regimes. To do so, we propose a novel way to combine mode constraints as used commonly in energy-minimization AMG methods with the local approximation of ideal operators used in [math]. The resulting constrained [math] algorithm is able to achieve fast scalable convergence on advective and diffusive problems. In addition, it is able to achieve standard low complexity hierarchies in the diffusive regime through aggressive coarsening, something that was previously difficult for reduction-based methods.\",\"PeriodicalId\":49526,\"journal\":{\"name\":\"SIAM Journal on Scientific Computing\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1583442\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1583442","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Constrained Local Approximate Ideal Restriction for Advection-Diffusion Problems
SIAM Journal on Scientific Computing, Ahead of Print. Abstract. This paper focuses on developing a reduction-based algebraic multigrid (AMG) method that is suitable for solving general (non)symmetric linear systems and is naturally robust from pure advection to pure diffusion. Initial motivation comes from a new reduction-based AMG approach, [math] (local approximate ideal restriction), that was developed for solving advection-dominated problems. Though this new solver is very effective in the advection-dominated regime, its performance degrades in cases where diffusion becomes dominant. This is consistent with the fact that in general, reduction-based AMG methods tend to suffer from growth in complexity and/or convergence rates as the problem size is increased, especially for diffusion-dominated problems in two or three dimensions. Motivated by the success of [math] in the advective regime, our aim in this paper is to generalize the AIR framework with the goal of improving the performance of the solver in diffusion-dominated regimes. To do so, we propose a novel way to combine mode constraints as used commonly in energy-minimization AMG methods with the local approximation of ideal operators used in [math]. The resulting constrained [math] algorithm is able to achieve fast scalable convergence on advective and diffusive problems. In addition, it is able to achieve standard low complexity hierarchies in the diffusive regime through aggressive coarsening, something that was previously difficult for reduction-based methods.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.