可压缩多介质流的保界和保正高阶任意拉格朗日-欧勒非连续伽勒金方法

IF 3 2区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Scientific Computing Pub Date : 2024-05-03 DOI:10.1137/23m1588810
Fan Zhang, Jian Cheng
{"title":"可压缩多介质流的保界和保正高阶任意拉格朗日-欧勒非连续伽勒金方法","authors":"Fan Zhang, Jian Cheng","doi":"10.1137/23m1588810","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page B254-B279, June 2024. <br/>Abstract. This work presents a novel bound-preserving and positivity-preserving direct arbitrary Lagrangian–Eulerian discontinuous Galerkin (ALE-DG) method for compressible multimedium flows by solving the five-equation transport model. The proposed method satisfies the discrete geometric conservation law (D-GCL) which indicates that uniform flow is precisely preserved during the simulation. More importantly, based on the D-GCL condition, we present a theoretical analysis on designing an efficient bound-preserving and positivity-preserving limiting strategy, which is able to maintain the boundedness of the volume fraction and the positivity of the partial density and internal energy, with the aim of avoiding the occurrence of inadmissible solutions and meanwhile improving the computational robustness. The accuracy and robustness of the proposed method are demonstrated by various one- and two-dimensional benchmark test cases. The numerical results verify the well capacity of the proposed high-order ALE-DG method for compressible multimedium flows with both the ideal and stiffened gas equation of state.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"17 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bound-Preserving and Positivity-Preserving High-Order Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Method for Compressible Multi-Medium Flows\",\"authors\":\"Fan Zhang, Jian Cheng\",\"doi\":\"10.1137/23m1588810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page B254-B279, June 2024. <br/>Abstract. This work presents a novel bound-preserving and positivity-preserving direct arbitrary Lagrangian–Eulerian discontinuous Galerkin (ALE-DG) method for compressible multimedium flows by solving the five-equation transport model. The proposed method satisfies the discrete geometric conservation law (D-GCL) which indicates that uniform flow is precisely preserved during the simulation. More importantly, based on the D-GCL condition, we present a theoretical analysis on designing an efficient bound-preserving and positivity-preserving limiting strategy, which is able to maintain the boundedness of the volume fraction and the positivity of the partial density and internal energy, with the aim of avoiding the occurrence of inadmissible solutions and meanwhile improving the computational robustness. The accuracy and robustness of the proposed method are demonstrated by various one- and two-dimensional benchmark test cases. The numerical results verify the well capacity of the proposed high-order ALE-DG method for compressible multimedium flows with both the ideal and stiffened gas equation of state.\",\"PeriodicalId\":49526,\"journal\":{\"name\":\"SIAM Journal on Scientific Computing\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1588810\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1588810","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 科学计算期刊》,第 46 卷第 3 期,第 B254-B279 页,2024 年 6 月。摘要本文通过求解五方程输运模型,针对可压缩多介质流提出了一种新颖的保界和保正的直接任意拉格朗日-欧勒非连续伽勒金(ALE-DG)方法。所提出的方法满足离散几何守恒定律(D-GCL),这表明在模拟过程中均匀流得到了精确的保留。更重要的是,基于 D-GCL 条件,我们从理论上分析了如何设计一种高效的保界和保正限制策略,该策略能够保持体积分数的有界性以及部分密度和内能的正性,从而避免出现不允许解,同时提高计算的鲁棒性。各种一维和二维基准测试案例证明了所提方法的准确性和鲁棒性。数值结果验证了所提出的高阶 ALE-DG 方法在理想气体和强化气体状态方程的可压缩多介质流动中的良好能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bound-Preserving and Positivity-Preserving High-Order Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Method for Compressible Multi-Medium Flows
SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page B254-B279, June 2024.
Abstract. This work presents a novel bound-preserving and positivity-preserving direct arbitrary Lagrangian–Eulerian discontinuous Galerkin (ALE-DG) method for compressible multimedium flows by solving the five-equation transport model. The proposed method satisfies the discrete geometric conservation law (D-GCL) which indicates that uniform flow is precisely preserved during the simulation. More importantly, based on the D-GCL condition, we present a theoretical analysis on designing an efficient bound-preserving and positivity-preserving limiting strategy, which is able to maintain the boundedness of the volume fraction and the positivity of the partial density and internal energy, with the aim of avoiding the occurrence of inadmissible solutions and meanwhile improving the computational robustness. The accuracy and robustness of the proposed method are demonstrated by various one- and two-dimensional benchmark test cases. The numerical results verify the well capacity of the proposed high-order ALE-DG method for compressible multimedium flows with both the ideal and stiffened gas equation of state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
3.20%
发文量
209
审稿时长
1 months
期刊介绍: The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems. SISC papers are classified into three categories: 1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms. 2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist. 3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.
期刊最新文献
Finite Element Approximation for the Delayed Generalized Burgers–Huxley Equation with Weakly Singular Kernel: Part II Nonconforming and DG Approximation Interpolating Parametrized Quantum Circuits Using Blackbox Queries Robust Iterative Method for Symmetric Quantum Signal Processing in All Parameter Regimes The Sparse-Grid-Based Adaptive Spectral Koopman Method Bound-Preserving Framework for Central-Upwind Schemes for General Hyperbolic Conservation Laws
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1