鉴定与人类侧位缺陷、先天性心脏病和精子缺陷有关的新型 MYO1D 变异基因

IF 3.9 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Frontiers of Medicine Pub Date : 2024-04-30 DOI:10.1007/s11684-023-1042-6
Zhuangzhuang Yuan, Xin Zhu, Xiaohui Xie, Chenyu Wang, Heng Gu, Junlin Yang, Liangliang Fan, Rong Xiang, Yifeng Yang, Zhiping Tan
{"title":"鉴定与人类侧位缺陷、先天性心脏病和精子缺陷有关的新型 MYO1D 变异基因","authors":"Zhuangzhuang Yuan, Xin Zhu, Xiaohui Xie, Chenyu Wang, Heng Gu, Junlin Yang, Liangliang Fan, Rong Xiang, Yifeng Yang, Zhiping Tan","doi":"10.1007/s11684-023-1042-6","DOIUrl":null,"url":null,"abstract":"<p>The establishment of left–right asymmetry is a fundamental process in animal development. Interference with this process leads to a range of disorders collectively known as laterality defects, which manifest as abnormal arrangements of visceral organs. Among patients with laterality defects, congenital heart diseases (CHD) are prevalent. Through multiple model organisms, extant research has established that myosin-Id (MYO1D) deficiency causes laterality defects. This study investigated over a hundred cases and identified a novel biallelic variant of <i>MYO1D</i> (NM_015194: c.1531G&gt;A; p.D511N) in a consanguineous family with complex CHD and laterality defects. Further examination of the proband revealed asthenoteratozoospermia and shortened sperm. Afterward, the effects of the D511N variant and another known <i>MYO1D</i> variant (NM_015194: c.2293C&gt;T; p.P765S) were assessed. The assessment showed that both enhance the interaction with β-actin and SPAG6. Overall, this study revealed the genetic heterogeneity of this rare disease and found that <i>MYO1D</i> variants are correlated with laterality defects and CHD in humans. Furthermore, this research established a connection between sperm defects and <i>MYO1D</i> variants. It offers guidance for exploring infertility and reproductive health concerns. The findings provide a critical basis for advancing personalized medicine and genetic counseling.</p>","PeriodicalId":12558,"journal":{"name":"Frontiers of Medicine","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of a novel MYO1D variant associated with laterality defects, congenital heart diseases, and sperm defects in humans\",\"authors\":\"Zhuangzhuang Yuan, Xin Zhu, Xiaohui Xie, Chenyu Wang, Heng Gu, Junlin Yang, Liangliang Fan, Rong Xiang, Yifeng Yang, Zhiping Tan\",\"doi\":\"10.1007/s11684-023-1042-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The establishment of left–right asymmetry is a fundamental process in animal development. Interference with this process leads to a range of disorders collectively known as laterality defects, which manifest as abnormal arrangements of visceral organs. Among patients with laterality defects, congenital heart diseases (CHD) are prevalent. Through multiple model organisms, extant research has established that myosin-Id (MYO1D) deficiency causes laterality defects. This study investigated over a hundred cases and identified a novel biallelic variant of <i>MYO1D</i> (NM_015194: c.1531G&gt;A; p.D511N) in a consanguineous family with complex CHD and laterality defects. Further examination of the proband revealed asthenoteratozoospermia and shortened sperm. Afterward, the effects of the D511N variant and another known <i>MYO1D</i> variant (NM_015194: c.2293C&gt;T; p.P765S) were assessed. The assessment showed that both enhance the interaction with β-actin and SPAG6. Overall, this study revealed the genetic heterogeneity of this rare disease and found that <i>MYO1D</i> variants are correlated with laterality defects and CHD in humans. Furthermore, this research established a connection between sperm defects and <i>MYO1D</i> variants. It offers guidance for exploring infertility and reproductive health concerns. The findings provide a critical basis for advancing personalized medicine and genetic counseling.</p>\",\"PeriodicalId\":12558,\"journal\":{\"name\":\"Frontiers of Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11684-023-1042-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11684-023-1042-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

左右不对称的形成是动物发育的一个基本过程。干扰这一过程会导致一系列统称为侧位缺陷的疾病,表现为内脏器官的异常排列。在侧位缺陷患者中,先天性心脏病(CHD)很常见。通过多种模式生物,现有研究已确定肌球蛋白-Id(MYO1D)缺乏会导致侧位缺陷。本研究调查了一百多个病例,在一个伴有复杂先天性心脏病和侧位缺陷的近亲家庭中发现了一个新的 MYO1D 双倍重复变体(NM_015194:c.1531G>A; p.D511N)。对原告的进一步检查发现,他患有少精症和精子过短。随后,对 D511N 变异和另一个已知的 MYO1D 变异(NM_015194:c.2293C>T; p.P765S)的影响进行了评估。评估结果表明,这两种变异都增强了与β-肌动蛋白和 SPAG6 的相互作用。总之,这项研究揭示了这种罕见疾病的遗传异质性,并发现 MYO1D 变异与人类侧位缺陷和先天性心脏病有关。此外,这项研究还建立了精子缺陷与 MYO1D 变异之间的联系。它为探索不育症和生殖健康问题提供了指导。这些发现为推进个性化医疗和遗传咨询提供了重要依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of a novel MYO1D variant associated with laterality defects, congenital heart diseases, and sperm defects in humans

The establishment of left–right asymmetry is a fundamental process in animal development. Interference with this process leads to a range of disorders collectively known as laterality defects, which manifest as abnormal arrangements of visceral organs. Among patients with laterality defects, congenital heart diseases (CHD) are prevalent. Through multiple model organisms, extant research has established that myosin-Id (MYO1D) deficiency causes laterality defects. This study investigated over a hundred cases and identified a novel biallelic variant of MYO1D (NM_015194: c.1531G>A; p.D511N) in a consanguineous family with complex CHD and laterality defects. Further examination of the proband revealed asthenoteratozoospermia and shortened sperm. Afterward, the effects of the D511N variant and another known MYO1D variant (NM_015194: c.2293C>T; p.P765S) were assessed. The assessment showed that both enhance the interaction with β-actin and SPAG6. Overall, this study revealed the genetic heterogeneity of this rare disease and found that MYO1D variants are correlated with laterality defects and CHD in humans. Furthermore, this research established a connection between sperm defects and MYO1D variants. It offers guidance for exploring infertility and reproductive health concerns. The findings provide a critical basis for advancing personalized medicine and genetic counseling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Medicine
Frontiers of Medicine ONCOLOGYMEDICINE, RESEARCH & EXPERIMENTAL&-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
18.30
自引率
0.00%
发文量
800
期刊介绍: Frontiers of Medicine is an international general medical journal sponsored by the Ministry of Education of China. The journal is jointly published by the Higher Education Press and Springer. Since the first issue of 2010, this journal has been indexed in PubMed/MEDLINE. Frontiers of Medicine is dedicated to publishing original research and review articles on the latest advances in clinical and basic medicine with a focus on epidemiology, traditional Chinese medicine, translational research, healthcare, public health and health policies.
期刊最新文献
Identification of susceptibility loci and relevant cell type for IgA nephropathy in Han Chinese by integrative genome-wide analysis. Epigenetic modifiers: catalytic or noncatalytic, that is the question. Intracellular checkpoints for NK cell cancer immunotherapy. PAK5-mediated PKM2 phosphorylation is critical for anaerobic glycolysis in endometriosis. Holistic Integrative Medicine Declaration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1