混合整数凸优化的精确增量拉格朗日对偶性

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Optimization Pub Date : 2024-05-02 DOI:10.1137/22m1526204
Avinash Bhardwaj, Vishnu Narayanan, Abhishek Pathapati
{"title":"混合整数凸优化的精确增量拉格朗日对偶性","authors":"Avinash Bhardwaj, Vishnu Narayanan, Abhishek Pathapati","doi":"10.1137/22m1526204","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1622-1645, June 2024. <br/>Abstract. Augmented Lagrangian dual augments the classical Lagrangian dual with a nonnegative nonlinear penalty function of the violation of the relaxed/dualized constraints in order to reduce the duality gap. We investigate the cases in which mixed integer convex optimization problems have an exact penalty representation using sharp augmenting functions (norms as augmenting penalty functions). We present a generalizable constructive proof technique for proving existence of exact penalty representations for mixed integer convex programs under specific conditions using the associated value functions. This generalizes the recent results for mixed integer linear programming [M. J. Feizollahi, S. Ahmed, and A. Sun, Math. Program., 161 (2017), pp. 365–387] and mixed integer quadratic progamming [X. Gu, S. Ahmed, and S. S. Dey, SIAM J. Optim., 30 (2020), pp. 781–797] while also providing an alternative proof for the aforementioned along with quantification of the finite penalty parameter in these cases.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact Augmented Lagrangian Duality for Mixed Integer Convex Optimization\",\"authors\":\"Avinash Bhardwaj, Vishnu Narayanan, Abhishek Pathapati\",\"doi\":\"10.1137/22m1526204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1622-1645, June 2024. <br/>Abstract. Augmented Lagrangian dual augments the classical Lagrangian dual with a nonnegative nonlinear penalty function of the violation of the relaxed/dualized constraints in order to reduce the duality gap. We investigate the cases in which mixed integer convex optimization problems have an exact penalty representation using sharp augmenting functions (norms as augmenting penalty functions). We present a generalizable constructive proof technique for proving existence of exact penalty representations for mixed integer convex programs under specific conditions using the associated value functions. This generalizes the recent results for mixed integer linear programming [M. J. Feizollahi, S. Ahmed, and A. Sun, Math. Program., 161 (2017), pp. 365–387] and mixed integer quadratic progamming [X. Gu, S. Ahmed, and S. S. Dey, SIAM J. Optim., 30 (2020), pp. 781–797] while also providing an alternative proof for the aforementioned along with quantification of the finite penalty parameter in these cases.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1526204\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1526204","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 优化期刊》第 34 卷第 2 期第 1622-1645 页,2024 年 6 月。摘要增量拉格朗日对偶用违反松弛/对偶约束的非负非线性惩罚函数来增量经典拉格朗日对偶,以减小对偶差距。我们研究了混合整数凸优化问题中使用尖锐增强函数(作为增强惩罚函数的规范)进行精确惩罚表示的情况。我们提出了一种可推广的构造证明技术,在特定条件下利用相关的值函数证明混合整数凸程序存在精确的惩罚表示。这概括了混合整数线性规划的最新成果 [M. J. Feizollahi, M. J. Feizollahi, M. J. M.J. Feizollahi, S. Ahmed, and A. Sun, Math.161 (2017), pp. 365-387] 和混合整数二次编程 [X. Gu, S. Ahmed, and S. S. Dey, SIAM J. Optim., 30 (2020), pp.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exact Augmented Lagrangian Duality for Mixed Integer Convex Optimization
SIAM Journal on Optimization, Volume 34, Issue 2, Page 1622-1645, June 2024.
Abstract. Augmented Lagrangian dual augments the classical Lagrangian dual with a nonnegative nonlinear penalty function of the violation of the relaxed/dualized constraints in order to reduce the duality gap. We investigate the cases in which mixed integer convex optimization problems have an exact penalty representation using sharp augmenting functions (norms as augmenting penalty functions). We present a generalizable constructive proof technique for proving existence of exact penalty representations for mixed integer convex programs under specific conditions using the associated value functions. This generalizes the recent results for mixed integer linear programming [M. J. Feizollahi, S. Ahmed, and A. Sun, Math. Program., 161 (2017), pp. 365–387] and mixed integer quadratic progamming [X. Gu, S. Ahmed, and S. S. Dey, SIAM J. Optim., 30 (2020), pp. 781–797] while also providing an alternative proof for the aforementioned along with quantification of the finite penalty parameter in these cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
期刊最新文献
Corrigendum and Addendum: Newton Differentiability of Convex Functions in Normed Spaces and of a Class of Operators Newton-Based Alternating Methods for the Ground State of a Class of Multicomponent Bose–Einstein Condensates Minimum Spanning Trees in Infinite Graphs: Theory and Algorithms On Minimal Extended Representations of Generalized Power Cones A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1