为图像标题设计检索增强架构

IF 5.2 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Multimedia Computing Communications and Applications Pub Date : 2024-05-03 DOI:10.1145/3663667
Sara Sarto, Marcella Cornia, Lorenzo Baraldi, Alessandro Nicolosi, Rita Cucchiara
{"title":"为图像标题设计检索增强架构","authors":"Sara Sarto, Marcella Cornia, Lorenzo Baraldi, Alessandro Nicolosi, Rita Cucchiara","doi":"10.1145/3663667","DOIUrl":null,"url":null,"abstract":"<p>The objective of image captioning models is to bridge the gap between the visual and linguistic modalities by generating natural language descriptions that accurately reflect the content of input images. In recent years, researchers have leveraged deep learning-based models and made advances in the extraction of visual features and the design of multimodal connections to tackle this task. This work presents a novel approach towards developing image captioning models that utilize an external <i>k</i>NN memory to improve the generation process. Specifically, we propose two model variants that incorporate a knowledge retriever component that is based on visual similarities, a differentiable encoder to represent input images, and a <i>k</i>NN-augmented language model to predict tokens based on contextual cues and text retrieved from the external memory. We experimentally validate our approach on COCO and nocaps datasets and demonstrate that incorporating an explicit external memory can significantly enhance the quality of captions, especially with a larger retrieval corpus. This work provides valuable insights into retrieval-augmented captioning models and opens up new avenues for improving image captioning at a larger scale.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Retrieval-Augmented Architectures for Image Captioning\",\"authors\":\"Sara Sarto, Marcella Cornia, Lorenzo Baraldi, Alessandro Nicolosi, Rita Cucchiara\",\"doi\":\"10.1145/3663667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The objective of image captioning models is to bridge the gap between the visual and linguistic modalities by generating natural language descriptions that accurately reflect the content of input images. In recent years, researchers have leveraged deep learning-based models and made advances in the extraction of visual features and the design of multimodal connections to tackle this task. This work presents a novel approach towards developing image captioning models that utilize an external <i>k</i>NN memory to improve the generation process. Specifically, we propose two model variants that incorporate a knowledge retriever component that is based on visual similarities, a differentiable encoder to represent input images, and a <i>k</i>NN-augmented language model to predict tokens based on contextual cues and text retrieved from the external memory. We experimentally validate our approach on COCO and nocaps datasets and demonstrate that incorporating an explicit external memory can significantly enhance the quality of captions, especially with a larger retrieval corpus. This work provides valuable insights into retrieval-augmented captioning models and opens up new avenues for improving image captioning at a larger scale.</p>\",\"PeriodicalId\":50937,\"journal\":{\"name\":\"ACM Transactions on Multimedia Computing Communications and Applications\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Multimedia Computing Communications and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3663667\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3663667","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

图像标题模型的目标是通过生成能准确反映输入图像内容的自然语言描述,在视觉和语言模式之间架起一座桥梁。近年来,研究人员利用基于深度学习的模型,在视觉特征提取和多模态连接设计方面取得了进展,从而解决了这一任务。本研究提出了一种开发图像字幕模型的新方法,利用外部 kNN 内存来改进生成过程。具体来说,我们提出了两个模型变体,其中包含一个基于视觉相似性的知识检索器组件、一个用于表示输入图像的可微分编码器,以及一个根据上下文线索和从外部存储器检索的文本预测标记的 kNN 增强语言模型。我们在 COCO 和 nocaps 数据集上对我们的方法进行了实验验证,结果表明,加入明确的外部记忆可以显著提高字幕质量,尤其是在检索语料库较大的情况下。这项工作为检索增强字幕模型提供了宝贵的见解,并为更大规模地改进图像字幕开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Retrieval-Augmented Architectures for Image Captioning

The objective of image captioning models is to bridge the gap between the visual and linguistic modalities by generating natural language descriptions that accurately reflect the content of input images. In recent years, researchers have leveraged deep learning-based models and made advances in the extraction of visual features and the design of multimodal connections to tackle this task. This work presents a novel approach towards developing image captioning models that utilize an external kNN memory to improve the generation process. Specifically, we propose two model variants that incorporate a knowledge retriever component that is based on visual similarities, a differentiable encoder to represent input images, and a kNN-augmented language model to predict tokens based on contextual cues and text retrieved from the external memory. We experimentally validate our approach on COCO and nocaps datasets and demonstrate that incorporating an explicit external memory can significantly enhance the quality of captions, especially with a larger retrieval corpus. This work provides valuable insights into retrieval-augmented captioning models and opens up new avenues for improving image captioning at a larger scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
5.90%
发文量
285
审稿时长
7.5 months
期刊介绍: The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome. TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.
期刊最新文献
TA-Detector: A GNN-based Anomaly Detector via Trust Relationship KF-VTON: Keypoints-Driven Flow Based Virtual Try-On Network Unified View Empirical Study for Large Pretrained Model on Cross-Domain Few-Shot Learning Multimodal Fusion for Talking Face Generation Utilizing Speech-related Facial Action Units Compressed Point Cloud Quality Index by Combining Global Appearance and Local Details
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1