独立于细胞生长的生化反应的全基因组筛选方法

IF 7.7 2区 生物学 Q1 GENETICS & HEREDITY Annual review of genomics and human genetics Pub Date : 2024-05-02 DOI:10.1146/annurev-genom-121222-115958
Yuki Noguchi, Risa Matsui, Jaeyeon Suh, Yu Dou, Jun Suzuki
{"title":"独立于细胞生长的生化反应的全基因组筛选方法","authors":"Yuki Noguchi, Risa Matsui, Jaeyeon Suh, Yu Dou, Jun Suzuki","doi":"10.1146/annurev-genom-121222-115958","DOIUrl":null,"url":null,"abstract":"Genome-wide screening is a potent approach for comprehensively understanding the molecular mechanisms of biological phenomena. However, despite its widespread use in the past decades across various biological targets, its application to biochemical reactions with temporal and reversible biological outputs remains a formidable challenge. To uncover the molecular machinery underlying various biochemical reactions, we have recently developed the revival screening method, which combines flow cytometry–based cell sorting with library reconstruction from collected cells. Our refinements to the traditional genome-wide screening technique have proven successful in revealing the molecular machinery of biochemical reactions of interest. In this article, we elucidate the technical basis of revival screening, focusing on its application to CRISPR-Cas9 single guide RNA (sgRNA) library and complementary DNA (cDNA) library screening. Finally, we also discuss the future of genome-wide screening while describing recent achievements from in vitro and in vivo screening.","PeriodicalId":8231,"journal":{"name":"Annual review of genomics and human genetics","volume":"31 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-Wide Screening Approaches for Biochemical Reactions Independent of Cell Growth\",\"authors\":\"Yuki Noguchi, Risa Matsui, Jaeyeon Suh, Yu Dou, Jun Suzuki\",\"doi\":\"10.1146/annurev-genom-121222-115958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genome-wide screening is a potent approach for comprehensively understanding the molecular mechanisms of biological phenomena. However, despite its widespread use in the past decades across various biological targets, its application to biochemical reactions with temporal and reversible biological outputs remains a formidable challenge. To uncover the molecular machinery underlying various biochemical reactions, we have recently developed the revival screening method, which combines flow cytometry–based cell sorting with library reconstruction from collected cells. Our refinements to the traditional genome-wide screening technique have proven successful in revealing the molecular machinery of biochemical reactions of interest. In this article, we elucidate the technical basis of revival screening, focusing on its application to CRISPR-Cas9 single guide RNA (sgRNA) library and complementary DNA (cDNA) library screening. Finally, we also discuss the future of genome-wide screening while describing recent achievements from in vitro and in vivo screening.\",\"PeriodicalId\":8231,\"journal\":{\"name\":\"Annual review of genomics and human genetics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of genomics and human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-genom-121222-115958\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genomics and human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genom-121222-115958","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

全基因组筛选是全面了解生物现象分子机制的有效方法。然而,尽管该方法在过去几十年中被广泛应用于各种生物靶标,但将其应用于具有时间性和可逆生物输出的生化反应仍是一项艰巨的挑战。为了揭示各种生化反应背后的分子机制,我们最近开发了复兴筛选方法,该方法将基于流式细胞仪的细胞分选与从收集的细胞中重建文库相结合。事实证明,我们对传统全基因组筛选技术的改进成功地揭示了相关生化反应的分子机制。在本文中,我们将阐明复兴筛选的技术基础,重点介绍其在 CRISPR-Cas9 单导 RNA (sgRNA) 文库和互补 DNA (cDNA) 文库筛选中的应用。最后,我们还讨论了全基因组筛选的未来,同时介绍了体外和体内筛选的最新成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome-Wide Screening Approaches for Biochemical Reactions Independent of Cell Growth
Genome-wide screening is a potent approach for comprehensively understanding the molecular mechanisms of biological phenomena. However, despite its widespread use in the past decades across various biological targets, its application to biochemical reactions with temporal and reversible biological outputs remains a formidable challenge. To uncover the molecular machinery underlying various biochemical reactions, we have recently developed the revival screening method, which combines flow cytometry–based cell sorting with library reconstruction from collected cells. Our refinements to the traditional genome-wide screening technique have proven successful in revealing the molecular machinery of biochemical reactions of interest. In this article, we elucidate the technical basis of revival screening, focusing on its application to CRISPR-Cas9 single guide RNA (sgRNA) library and complementary DNA (cDNA) library screening. Finally, we also discuss the future of genome-wide screening while describing recent achievements from in vitro and in vivo screening.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.90
自引率
1.10%
发文量
29
期刊介绍: Since its inception in 2000, the Annual Review of Genomics and Human Genetics has been dedicated to showcasing significant developments in genomics as they pertain to human genetics and the human genome. The journal emphasizes genomic technology, genome structure and function, genetic modification, human variation and population genetics, human evolution, and various aspects of human genetic diseases, including individualized medicine.
期刊最新文献
PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. RNA Sequencing in Disease Diagnosis. The Myriad Decision at 10. The Role of Cilia and the Complex Genetics of Congenital Heart Disease. Toward Realizing the Promise of AI in Precision Health Across the Spectrum of Care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1