三电平共振介质中的极短非重叠光脉冲产生的电磁诱导光栅

IF 1.2 4区 物理与天体物理 Q4 OPTICS Laser Physics Pub Date : 2024-05-02 DOI:10.1088/1555-6611/ad3ae6
Rostislav Arkhipov
{"title":"三电平共振介质中的极短非重叠光脉冲产生的电磁诱导光栅","authors":"Rostislav Arkhipov","doi":"10.1088/1555-6611/ad3ae6","DOIUrl":null,"url":null,"abstract":"In a fixed spectral range, single- and half-cycle electromagnetic pulses have the shortest duration. Half-cycle pulses are promising tools for ultrafast control of quantum systems. Previously, the possibility of using a sequence of single- and half-cycle attosecond pulses to generate and ultrafast control light-induced population difference gratings has been demonstrated. However, such studies have been carried out using different approximations, such as the sudden perturbation theory and the two-level model for the resonant medium. In this paper, based on the numerical solution of constitutive equations for elements of the density matrix and wave equation it is shown that it is possible to generate and control population gratings in a three-level medium without using the approximation of sudden perturbations used in previous studies. It is shown that taking into account the additional level of the medium does not lead to a violation of the effect of generating such gratings. This extends the applicability of previous results.","PeriodicalId":17976,"journal":{"name":"Laser Physics","volume":"49 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetically induced gratings created by extremely short non-overlapping pulses of light in a three-level resonant medium\",\"authors\":\"Rostislav Arkhipov\",\"doi\":\"10.1088/1555-6611/ad3ae6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a fixed spectral range, single- and half-cycle electromagnetic pulses have the shortest duration. Half-cycle pulses are promising tools for ultrafast control of quantum systems. Previously, the possibility of using a sequence of single- and half-cycle attosecond pulses to generate and ultrafast control light-induced population difference gratings has been demonstrated. However, such studies have been carried out using different approximations, such as the sudden perturbation theory and the two-level model for the resonant medium. In this paper, based on the numerical solution of constitutive equations for elements of the density matrix and wave equation it is shown that it is possible to generate and control population gratings in a three-level medium without using the approximation of sudden perturbations used in previous studies. It is shown that taking into account the additional level of the medium does not lead to a violation of the effect of generating such gratings. This extends the applicability of previous results.\",\"PeriodicalId\":17976,\"journal\":{\"name\":\"Laser Physics\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1555-6611/ad3ae6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1555-6611/ad3ae6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

在固定的光谱范围内,单周期和半周期电磁脉冲的持续时间最短。半周期脉冲是量子系统超快控制的理想工具。在此之前,利用单周期和半周期阿秒脉冲序列生成和超快控制光诱导种群差光栅的可能性已经得到证实。然而,这些研究都是利用不同的近似方法进行的,如突扰理论和共振介质的两级模型。本文基于对密度矩阵元素构成方程和波方程的数值求解,表明可以在三电平介质中生成和控制群体光栅,而无需使用以往研究中使用的猝发扰动近似值。结果表明,考虑到介质的额外层次并不会导致产生这种光栅的效果受到影响。这就扩大了以往结果的适用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electromagnetically induced gratings created by extremely short non-overlapping pulses of light in a three-level resonant medium
In a fixed spectral range, single- and half-cycle electromagnetic pulses have the shortest duration. Half-cycle pulses are promising tools for ultrafast control of quantum systems. Previously, the possibility of using a sequence of single- and half-cycle attosecond pulses to generate and ultrafast control light-induced population difference gratings has been demonstrated. However, such studies have been carried out using different approximations, such as the sudden perturbation theory and the two-level model for the resonant medium. In this paper, based on the numerical solution of constitutive equations for elements of the density matrix and wave equation it is shown that it is possible to generate and control population gratings in a three-level medium without using the approximation of sudden perturbations used in previous studies. It is shown that taking into account the additional level of the medium does not lead to a violation of the effect of generating such gratings. This extends the applicability of previous results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Laser Physics
Laser Physics 物理-光学
CiteScore
2.60
自引率
8.30%
发文量
127
审稿时长
2.2 months
期刊介绍: Laser Physics offers a comprehensive view of theoretical and experimental laser research and applications. Articles cover every aspect of modern laser physics and quantum electronics, emphasizing physical effects in various media (solid, gaseous, liquid) leading to the generation of laser radiation; peculiarities of propagation of laser radiation; problems involving impact of laser radiation on various substances and the emerging physical effects, including coherent ones; the applied use of lasers and laser spectroscopy; the processing and storage of information; and more. The full list of subject areas covered is as follows: -physics of lasers- fibre optics and fibre lasers- quantum optics and quantum information science- ultrafast optics and strong-field physics- nonlinear optics- physics of cold trapped atoms- laser methods in chemistry, biology, medicine and ecology- laser spectroscopy- novel laser materials and lasers- optics of nanomaterials- interaction of laser radiation with matter- laser interaction with solids- photonics
期刊最新文献
Application of photothermal beam deflection spectrometry for non-destructive evaluation of advanced materials: a state-of-the-art review Tunable multicolor optomechanically induced transparency and slow-fast light in hybrid electro-optomechanical system Analysis of biospeckle pattern using grey-level and color-channel assessment methods Arrayed waveguide gratings (AWGs) in ZBLAN fibers for switchable dual-wavelength fiber lasers in the O- and S-band regions Generation of pulses and multiplying their repetition rate using the temporal fractional Talbot effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1