刚度对滑动指垫模拟物的摩擦力、表面应变和接触面积的影响

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Tribology Letters Pub Date : 2024-05-01 DOI:10.1007/s11249-024-01861-5
Zing Siang Lee, Raman Maiti, Matt Carré, Roger Lewis
{"title":"刚度对滑动指垫模拟物的摩擦力、表面应变和接触面积的影响","authors":"Zing Siang Lee,&nbsp;Raman Maiti,&nbsp;Matt Carré,&nbsp;Roger Lewis","doi":"10.1007/s11249-024-01861-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the frictional and surface strain behaviour of silicone hemispherical finger pad simulants with different stiffness during tribological interactions with a smooth glass plate. A novel contact area and strain measurement method employing a digital image correlation technique was employed to give new understanding of the pad behaviour during sliding. The frictional behaviour of the sliding finger pad simulant is dominated by the adhesion mechanism, with a small overall contribution from deformation, as suggested by the high principal strains at the edge of the contact area. The strain behaviour is also influenced by the magnitude of the normal force and the stiffness of the samples.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01861-5.pdf","citationCount":"0","resultStr":"{\"title\":\"The Effect of Stiffness on Friction, Surface Strain and Contact Area of a Sliding Finger Pad Simulant\",\"authors\":\"Zing Siang Lee,&nbsp;Raman Maiti,&nbsp;Matt Carré,&nbsp;Roger Lewis\",\"doi\":\"10.1007/s11249-024-01861-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the frictional and surface strain behaviour of silicone hemispherical finger pad simulants with different stiffness during tribological interactions with a smooth glass plate. A novel contact area and strain measurement method employing a digital image correlation technique was employed to give new understanding of the pad behaviour during sliding. The frictional behaviour of the sliding finger pad simulant is dominated by the adhesion mechanism, with a small overall contribution from deformation, as suggested by the high principal strains at the edge of the contact area. The strain behaviour is also influenced by the magnitude of the normal force and the stiffness of the samples.</p></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11249-024-01861-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-024-01861-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01861-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了不同硬度的硅胶半球形指垫模拟物在与光滑玻璃板进行摩擦学相互作用时的摩擦和表面应变行为。采用数字图像相关技术的新型接触面积和应变测量方法,对指垫在滑动过程中的行为有了新的认识。滑动指垫模拟物的摩擦行为由粘附机制主导,总体变形贡献较小,接触区域边缘的高主应变表明了这一点。应变行为还受到法向力大小和样品硬度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of Stiffness on Friction, Surface Strain and Contact Area of a Sliding Finger Pad Simulant

This study investigates the frictional and surface strain behaviour of silicone hemispherical finger pad simulants with different stiffness during tribological interactions with a smooth glass plate. A novel contact area and strain measurement method employing a digital image correlation technique was employed to give new understanding of the pad behaviour during sliding. The frictional behaviour of the sliding finger pad simulant is dominated by the adhesion mechanism, with a small overall contribution from deformation, as suggested by the high principal strains at the edge of the contact area. The strain behaviour is also influenced by the magnitude of the normal force and the stiffness of the samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
期刊最新文献
Wear Mechanism and Wear Debris Characterization of ULWPE in Multidirectional Motion Cobalt- and Chromium-Oxide-Based Coatings: Thermally Spraying a Glaze Layer Visualization of Structural Deformation of Polymer Additives in Oil Under High Shear Flow Influence of Variable-Depth Groove Texture on the Friction and Wear Performance of GCr15–SiC Friction Pairs Under Water Lubrication The Flow of Lubricant as a Mist in the Piston Assembly and Crankcase of a Fired Gasoline Engine: The Effect of Viscosity Modifier and the Link to Lubricant Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1