AgentLens:基于 LLM 的自主系统中的代理行为可视化分析

Jiaying Lu;Bo Pan;Jieyi Chen;Yingchaojie Feng;Jingyuan Hu;Yuchen Peng;Wei Chen
{"title":"AgentLens:基于 LLM 的自主系统中的代理行为可视化分析","authors":"Jiaying Lu;Bo Pan;Jieyi Chen;Yingchaojie Feng;Jingyuan Hu;Yuchen Peng;Wei Chen","doi":"10.1109/TVCG.2024.3394053","DOIUrl":null,"url":null,"abstract":"Recently, Large Language Model based Autonomous System (LLMAS) has gained great popularity for its potential to simulate complicated behaviors of human societies. One of its main challenges is to present and analyze the dynamic events evolution of LLMAS. In this work, we present a visualization approach to explore the detailed statuses and agents’ behavior within LLMAS. Our approach outlines a general pipeline that organizes raw execution events from LLMAS into a structured behavior model. We leverage a behavior summarization algorithm to create a hierarchical summary of these behaviors, arranged according to their sequence over time. Additionally, we design a cause trace method to mine the causal relationship between agent behaviors. We then develop <italic>AgentLens</i>, a visual analysis system that leverages a hierarchical temporal visualization for illustrating the evolution of LLMAS, and supports users to interactively investigate details and causes of agents’ behaviors. Two usage scenarios and a user study demonstrate the effectiveness and usability of our <italic>AgentLens</i>.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 8","pages":"4182-4197"},"PeriodicalIF":6.5000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AgentLens: Visual Analysis for Agent Behaviors in LLM-Based Autonomous Systems\",\"authors\":\"Jiaying Lu;Bo Pan;Jieyi Chen;Yingchaojie Feng;Jingyuan Hu;Yuchen Peng;Wei Chen\",\"doi\":\"10.1109/TVCG.2024.3394053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Large Language Model based Autonomous System (LLMAS) has gained great popularity for its potential to simulate complicated behaviors of human societies. One of its main challenges is to present and analyze the dynamic events evolution of LLMAS. In this work, we present a visualization approach to explore the detailed statuses and agents’ behavior within LLMAS. Our approach outlines a general pipeline that organizes raw execution events from LLMAS into a structured behavior model. We leverage a behavior summarization algorithm to create a hierarchical summary of these behaviors, arranged according to their sequence over time. Additionally, we design a cause trace method to mine the causal relationship between agent behaviors. We then develop <italic>AgentLens</i>, a visual analysis system that leverages a hierarchical temporal visualization for illustrating the evolution of LLMAS, and supports users to interactively investigate details and causes of agents’ behaviors. Two usage scenarios and a user study demonstrate the effectiveness and usability of our <italic>AgentLens</i>.\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"31 8\",\"pages\":\"4182-4197\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10520238/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10520238/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于大型语言模型的自治系统(Large Language Model based Autonomous System, LLMAS)因其模拟人类社会复杂行为的潜力而受到广泛关注。其主要挑战之一是呈现和分析LLMAS的动态事件演变。在这项工作中,我们提出了一种可视化方法来探索LLMAS中的详细状态和代理行为。我们的方法概述了一个通用的管道,将来自LLMAS的原始执行事件组织到结构化的行为模型中。我们利用行为总结算法来创建这些行为的分层总结,并根据它们随时间的顺序排列。此外,我们设计了一种原因跟踪方法来挖掘智能体行为之间的因果关系。然后,我们开发了AgentLens,这是一个可视化分析系统,利用分层时间可视化来说明LLMAS的演变,并支持用户交互式地调查代理行为的细节和原因。两个使用场景和一个用户研究证明了我们的AgentLens的有效性和可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AgentLens: Visual Analysis for Agent Behaviors in LLM-Based Autonomous Systems
Recently, Large Language Model based Autonomous System (LLMAS) has gained great popularity for its potential to simulate complicated behaviors of human societies. One of its main challenges is to present and analyze the dynamic events evolution of LLMAS. In this work, we present a visualization approach to explore the detailed statuses and agents’ behavior within LLMAS. Our approach outlines a general pipeline that organizes raw execution events from LLMAS into a structured behavior model. We leverage a behavior summarization algorithm to create a hierarchical summary of these behaviors, arranged according to their sequence over time. Additionally, we design a cause trace method to mine the causal relationship between agent behaviors. We then develop AgentLens, a visual analysis system that leverages a hierarchical temporal visualization for illustrating the evolution of LLMAS, and supports users to interactively investigate details and causes of agents’ behaviors. Two usage scenarios and a user study demonstrate the effectiveness and usability of our AgentLens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ESGaussianFace: Emotional and Stylized Audio-Driven Facial Animation Via 3D Gaussian Splatting. Generating Distance-Aware Human-to-Human Interaction Motions From Text Guidance. LAMDA: Aiding Visual Exploration of Atomic Displacements in Molecular Dynamics Simulations. Locally Adapted Reference Frame Fields using Moving Least Squares. SeparateGen: Semantic Component-based 3D Character Generation from Single Images.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1