Yefeng Yang, Tao Huang, Tianqi Wang, Wenyu Yang, Han Chen, Boyang Li, Chih-yung Wen
{"title":"自主机器人的采样高效路径规划和基于行为批判的改进型避障技术","authors":"Yefeng Yang, Tao Huang, Tianqi Wang, Wenyu Yang, Han Chen, Boyang Li, Chih-yung Wen","doi":"10.1007/s11432-022-3904-9","DOIUrl":null,"url":null,"abstract":"<p>Autonomous robots have garnered extensive utilization in diverse fields. Among the critical concerns for autonomous systems, path planning holds paramount importance. Notwithstanding considerable efforts in its development over the years, path planning for autonomous systems continues to grapple with challenges related to low planning efficiency and inadequate obstacle avoidance response in a timely manner. This study proposes a novel and systematic solution to the path planning problem within intricate office buildings. The solution consists of a global planner and a local planner. To handle the global planning aspect, an adaptive clustering-based dynamic programming rapidly exploring random tree (ACDP-RRT) algorithm is proposed. ACDP-RRT effectively identifies obstacles on the map by leveraging geometric features. These obstacles are then represented as a collection of sequentially arranged convex polygons, optimizing the sampling region and significantly enhancing sampling efficiency. For local planning, a network decoupling actor-critic (ND-AC) algorithm is employed. The proposed ND-AC simplifies the local planner design process by integrating planning and control loops into a neural network (NN) trained via an end-to-end model-free deep reinforcement learning (DRL) framework. Moreover, the adoption of network decoupling (ND) techniques leads to an improved obstacle avoidance success rate when compared to conventional actor-critic (AC)-based methods. Extensive simulations and experiments are conducted to demonstrate the effectiveness and robustness of the proposed approach.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":"99 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampling-efficient path planning and improved actor-critic-based obstacle avoidance for autonomous robots\",\"authors\":\"Yefeng Yang, Tao Huang, Tianqi Wang, Wenyu Yang, Han Chen, Boyang Li, Chih-yung Wen\",\"doi\":\"10.1007/s11432-022-3904-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Autonomous robots have garnered extensive utilization in diverse fields. Among the critical concerns for autonomous systems, path planning holds paramount importance. Notwithstanding considerable efforts in its development over the years, path planning for autonomous systems continues to grapple with challenges related to low planning efficiency and inadequate obstacle avoidance response in a timely manner. This study proposes a novel and systematic solution to the path planning problem within intricate office buildings. The solution consists of a global planner and a local planner. To handle the global planning aspect, an adaptive clustering-based dynamic programming rapidly exploring random tree (ACDP-RRT) algorithm is proposed. ACDP-RRT effectively identifies obstacles on the map by leveraging geometric features. These obstacles are then represented as a collection of sequentially arranged convex polygons, optimizing the sampling region and significantly enhancing sampling efficiency. For local planning, a network decoupling actor-critic (ND-AC) algorithm is employed. The proposed ND-AC simplifies the local planner design process by integrating planning and control loops into a neural network (NN) trained via an end-to-end model-free deep reinforcement learning (DRL) framework. Moreover, the adoption of network decoupling (ND) techniques leads to an improved obstacle avoidance success rate when compared to conventional actor-critic (AC)-based methods. Extensive simulations and experiments are conducted to demonstrate the effectiveness and robustness of the proposed approach.</p>\",\"PeriodicalId\":21618,\"journal\":{\"name\":\"Science China Information Sciences\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11432-022-3904-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-022-3904-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Sampling-efficient path planning and improved actor-critic-based obstacle avoidance for autonomous robots
Autonomous robots have garnered extensive utilization in diverse fields. Among the critical concerns for autonomous systems, path planning holds paramount importance. Notwithstanding considerable efforts in its development over the years, path planning for autonomous systems continues to grapple with challenges related to low planning efficiency and inadequate obstacle avoidance response in a timely manner. This study proposes a novel and systematic solution to the path planning problem within intricate office buildings. The solution consists of a global planner and a local planner. To handle the global planning aspect, an adaptive clustering-based dynamic programming rapidly exploring random tree (ACDP-RRT) algorithm is proposed. ACDP-RRT effectively identifies obstacles on the map by leveraging geometric features. These obstacles are then represented as a collection of sequentially arranged convex polygons, optimizing the sampling region and significantly enhancing sampling efficiency. For local planning, a network decoupling actor-critic (ND-AC) algorithm is employed. The proposed ND-AC simplifies the local planner design process by integrating planning and control loops into a neural network (NN) trained via an end-to-end model-free deep reinforcement learning (DRL) framework. Moreover, the adoption of network decoupling (ND) techniques leads to an improved obstacle avoidance success rate when compared to conventional actor-critic (AC)-based methods. Extensive simulations and experiments are conducted to demonstrate the effectiveness and robustness of the proposed approach.
期刊介绍:
Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.