深度学习揭示辐射风险评估的新见解

Zhenqiu Liu, Igor Shuryak, David J Brenner, Robert L Ullrich
{"title":"深度学习揭示辐射风险评估的新见解","authors":"Zhenqiu Liu, Igor Shuryak, David J Brenner, Robert L Ullrich","doi":"10.1101/2024.04.27.24306487","DOIUrl":null,"url":null,"abstract":"Contemporary radiation risk assessment predominantly depends on nonlinear parametric models, which typically include a baseline term, a dose-response term, and an effect modifier term. Despite their widespread application in estimating tumor risks, parametric models face a notable drawback: their rigid model structure can be overly restrictive, potentially introducing bias and inaccuracies into risk estimations.","PeriodicalId":501555,"journal":{"name":"medRxiv - Occupational and Environmental Health","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Insights for Radiation Risk Assessment Unveiled by Deep Learning\",\"authors\":\"Zhenqiu Liu, Igor Shuryak, David J Brenner, Robert L Ullrich\",\"doi\":\"10.1101/2024.04.27.24306487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contemporary radiation risk assessment predominantly depends on nonlinear parametric models, which typically include a baseline term, a dose-response term, and an effect modifier term. Despite their widespread application in estimating tumor risks, parametric models face a notable drawback: their rigid model structure can be overly restrictive, potentially introducing bias and inaccuracies into risk estimations.\",\"PeriodicalId\":501555,\"journal\":{\"name\":\"medRxiv - Occupational and Environmental Health\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Occupational and Environmental Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.04.27.24306487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Occupational and Environmental Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.04.27.24306487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当代辐射风险评估主要依赖于非线性参数模型,这些模型通常包括基线项、剂量反应项和效应修饰项。尽管参数模型在估算肿瘤风险方面应用广泛,但它也面临着一个明显的缺点:其僵化的模型结构可能限制性过强,有可能给风险估算带来偏差和不准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Insights for Radiation Risk Assessment Unveiled by Deep Learning
Contemporary radiation risk assessment predominantly depends on nonlinear parametric models, which typically include a baseline term, a dose-response term, and an effect modifier term. Despite their widespread application in estimating tumor risks, parametric models face a notable drawback: their rigid model structure can be overly restrictive, potentially introducing bias and inaccuracies into risk estimations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-utero exposure to PM2.5 and adverse birth outcomes in India: Geostatistical modelling using remote sensing and demographic health survey data 2019-21 Protocol for the Work And Vocational advicE (WAVE) randomised controlled trial testing the addition of vocational advice to usual primary care (Clinical Trials: NCT04543097) Harnessing non-standard nucleic acids for highly sensitive icosaplex (20-plex) detection of microbial threats Association of occupational exposure to chemical substances with bladder cancer in Ethiopia: A multi-center matched case-control Study The association between nurse staffing configurations and sickness absence: longitudinal study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1