{"title":"Ipomoea batatas 抗癌肽对番茄防御基因的影响","authors":"Hsin-Hung Lin, Kuan-Hung Lin, Yung-Lin Tsai, Rong-Jane Chen, Yen-Chang Lin, Yu-Chi Chen","doi":"10.2174/0113892037299818240408053000","DOIUrl":null,"url":null,"abstract":"Aims: This study investigates the impact of IbACP (Ipomoea batatas anti-cancer peptide) on defense-related gene expression in tomato leaves, focusing on its role in plant defense mechanisms. Background: IbACP was isolated from sweet potato leaves, and it was identified as a peptide capable of inducing an alkalinization response in tomato suspension culture media. Additionally, IbACP was found to regulate the proliferation of human pancreatic adenocarcinoma cells. Objective: Elucidate IbACP's molecular influence on defense-related gene expression in tomato leaves using next-generation sequencing analysis. method: To assess the impact of IbACP on defense-related gene expression, transcriptome data were analyzed, encompassing various functional categories such as photosynthesis, metabolic processes, and plant defense. Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis was employed to verify transcription levels of defense-related genes in tomato leaves treated with IbACP. Method: To assess the impact of IbACP on defense-related gene expression, transcriptome data were analyzed, encompassing various functional categories such as photosynthesis, metabolic processes, and plant defense. Semi-quantitative reverse-transcription polymerase chain reaction analysis was employed to verify transcription levels of defense-related genes in tomato leaves treated with IbACP for durations ranging from 0 h (control) to 24 h. Results: IbACP induced jasmonic acid-related genes (LoxD and AOS) at 2 h, with a significant up-regulation of salicylic acid-dependent gene NPR1 at 24 h. This suggested a temporal antagonistic effect between jasmonic acid and salicylic acid during the early hours of IbACP treatment. Downstream ethylene-responsive regulator genes (ACO1, ETR4, and ERF1) were consistently down-regulated by IbACP at all times. Additionally, IbACP significantly up-regulated the gene expressions of suberization-associated anionic peroxidases (TMP1 and TAP2) at all time points, indicating enhanced suberization of the plant cell wall to prevent pathogen invasion. Conclusion: IbACP enhances the synthesis of defense hormones and up-regulates downstream defense genes, improving the plant's resistance to biotic stresses.","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":"42 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influences of Ipomoea batatas Anti-Cancer Peptide on Tomato Defense Genes\",\"authors\":\"Hsin-Hung Lin, Kuan-Hung Lin, Yung-Lin Tsai, Rong-Jane Chen, Yen-Chang Lin, Yu-Chi Chen\",\"doi\":\"10.2174/0113892037299818240408053000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aims: This study investigates the impact of IbACP (Ipomoea batatas anti-cancer peptide) on defense-related gene expression in tomato leaves, focusing on its role in plant defense mechanisms. Background: IbACP was isolated from sweet potato leaves, and it was identified as a peptide capable of inducing an alkalinization response in tomato suspension culture media. Additionally, IbACP was found to regulate the proliferation of human pancreatic adenocarcinoma cells. Objective: Elucidate IbACP's molecular influence on defense-related gene expression in tomato leaves using next-generation sequencing analysis. method: To assess the impact of IbACP on defense-related gene expression, transcriptome data were analyzed, encompassing various functional categories such as photosynthesis, metabolic processes, and plant defense. Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis was employed to verify transcription levels of defense-related genes in tomato leaves treated with IbACP. Method: To assess the impact of IbACP on defense-related gene expression, transcriptome data were analyzed, encompassing various functional categories such as photosynthesis, metabolic processes, and plant defense. Semi-quantitative reverse-transcription polymerase chain reaction analysis was employed to verify transcription levels of defense-related genes in tomato leaves treated with IbACP for durations ranging from 0 h (control) to 24 h. Results: IbACP induced jasmonic acid-related genes (LoxD and AOS) at 2 h, with a significant up-regulation of salicylic acid-dependent gene NPR1 at 24 h. This suggested a temporal antagonistic effect between jasmonic acid and salicylic acid during the early hours of IbACP treatment. Downstream ethylene-responsive regulator genes (ACO1, ETR4, and ERF1) were consistently down-regulated by IbACP at all times. Additionally, IbACP significantly up-regulated the gene expressions of suberization-associated anionic peroxidases (TMP1 and TAP2) at all time points, indicating enhanced suberization of the plant cell wall to prevent pathogen invasion. Conclusion: IbACP enhances the synthesis of defense hormones and up-regulates downstream defense genes, improving the plant's resistance to biotic stresses.\",\"PeriodicalId\":10859,\"journal\":{\"name\":\"Current protein & peptide science\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protein & peptide science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892037299818240408053000\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037299818240408053000","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Influences of Ipomoea batatas Anti-Cancer Peptide on Tomato Defense Genes
Aims: This study investigates the impact of IbACP (Ipomoea batatas anti-cancer peptide) on defense-related gene expression in tomato leaves, focusing on its role in plant defense mechanisms. Background: IbACP was isolated from sweet potato leaves, and it was identified as a peptide capable of inducing an alkalinization response in tomato suspension culture media. Additionally, IbACP was found to regulate the proliferation of human pancreatic adenocarcinoma cells. Objective: Elucidate IbACP's molecular influence on defense-related gene expression in tomato leaves using next-generation sequencing analysis. method: To assess the impact of IbACP on defense-related gene expression, transcriptome data were analyzed, encompassing various functional categories such as photosynthesis, metabolic processes, and plant defense. Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis was employed to verify transcription levels of defense-related genes in tomato leaves treated with IbACP. Method: To assess the impact of IbACP on defense-related gene expression, transcriptome data were analyzed, encompassing various functional categories such as photosynthesis, metabolic processes, and plant defense. Semi-quantitative reverse-transcription polymerase chain reaction analysis was employed to verify transcription levels of defense-related genes in tomato leaves treated with IbACP for durations ranging from 0 h (control) to 24 h. Results: IbACP induced jasmonic acid-related genes (LoxD and AOS) at 2 h, with a significant up-regulation of salicylic acid-dependent gene NPR1 at 24 h. This suggested a temporal antagonistic effect between jasmonic acid and salicylic acid during the early hours of IbACP treatment. Downstream ethylene-responsive regulator genes (ACO1, ETR4, and ERF1) were consistently down-regulated by IbACP at all times. Additionally, IbACP significantly up-regulated the gene expressions of suberization-associated anionic peroxidases (TMP1 and TAP2) at all time points, indicating enhanced suberization of the plant cell wall to prevent pathogen invasion. Conclusion: IbACP enhances the synthesis of defense hormones and up-regulates downstream defense genes, improving the plant's resistance to biotic stresses.
期刊介绍:
Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.