Maryam Khademian, Yaghoub Sarrafi, Mahmood Tajbakhsh, Vahid Hasantabar
{"title":"用于去除水溶液中 NO3 离子的季支化聚乙烯亚胺基纳米复合材料","authors":"Maryam Khademian, Yaghoub Sarrafi, Mahmood Tajbakhsh, Vahid Hasantabar","doi":"10.1002/jccs.202400027","DOIUrl":null,"url":null,"abstract":"<p>This study synthesized a nanocomposite based on quaternary branched polyethyleneimine containing sodium alginate and graphene oxide and characterized by FE-SEM, EDX-MAP, XRD, FT-IR, and TGA and used as an efficient sorbent for the removal of nitrate ions. The maximum ion exchange in optimized conditions was discovered to be 75%. The experimental studies showed that nitrate removal follows the pseudo-first-order model due to more consonance. Also, Weber–Morris and Boyd models suggested that the nitrate ions adsorption on the surface of nanocomposite is not controlled only by the intraparticle diffusion step. Moreover, Langmuir, Redlich–Peterson, and Hill models exhibited high regression coefficients of 0.991, 0.993, and 0.992, respectively. Thermodynamic studies confirmed the adsorption system was spontaneous and exothermic. Recovery assay showed that more than 98% of the nitrate ion exchanged by the nanocomposite was regenerated and nanocomposite could be reused seven cycles without efficacy reducing significantly. The nanocomposite showed excellent antibacterial activity against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i> cells, with minimum inhibitory concentrations of 62.5 and 125 μg mL<sup>−1</sup>, and zone of growth inhibition of 17.5 ± 0.5 and 10.5 ± 0.5 mm, respectively. The results represented that the introduced nanocomposite is a useful material for the removal of nitrate ions from aqueous solution and has antibacterial properties.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quaternary branched polyethylenimine-based nanocomposite for removal of NO3− ions from aqueous solutions\",\"authors\":\"Maryam Khademian, Yaghoub Sarrafi, Mahmood Tajbakhsh, Vahid Hasantabar\",\"doi\":\"10.1002/jccs.202400027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study synthesized a nanocomposite based on quaternary branched polyethyleneimine containing sodium alginate and graphene oxide and characterized by FE-SEM, EDX-MAP, XRD, FT-IR, and TGA and used as an efficient sorbent for the removal of nitrate ions. The maximum ion exchange in optimized conditions was discovered to be 75%. The experimental studies showed that nitrate removal follows the pseudo-first-order model due to more consonance. Also, Weber–Morris and Boyd models suggested that the nitrate ions adsorption on the surface of nanocomposite is not controlled only by the intraparticle diffusion step. Moreover, Langmuir, Redlich–Peterson, and Hill models exhibited high regression coefficients of 0.991, 0.993, and 0.992, respectively. Thermodynamic studies confirmed the adsorption system was spontaneous and exothermic. Recovery assay showed that more than 98% of the nitrate ion exchanged by the nanocomposite was regenerated and nanocomposite could be reused seven cycles without efficacy reducing significantly. The nanocomposite showed excellent antibacterial activity against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i> cells, with minimum inhibitory concentrations of 62.5 and 125 μg mL<sup>−1</sup>, and zone of growth inhibition of 17.5 ± 0.5 and 10.5 ± 0.5 mm, respectively. The results represented that the introduced nanocomposite is a useful material for the removal of nitrate ions from aqueous solution and has antibacterial properties.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400027\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400027","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Quaternary branched polyethylenimine-based nanocomposite for removal of NO3− ions from aqueous solutions
This study synthesized a nanocomposite based on quaternary branched polyethyleneimine containing sodium alginate and graphene oxide and characterized by FE-SEM, EDX-MAP, XRD, FT-IR, and TGA and used as an efficient sorbent for the removal of nitrate ions. The maximum ion exchange in optimized conditions was discovered to be 75%. The experimental studies showed that nitrate removal follows the pseudo-first-order model due to more consonance. Also, Weber–Morris and Boyd models suggested that the nitrate ions adsorption on the surface of nanocomposite is not controlled only by the intraparticle diffusion step. Moreover, Langmuir, Redlich–Peterson, and Hill models exhibited high regression coefficients of 0.991, 0.993, and 0.992, respectively. Thermodynamic studies confirmed the adsorption system was spontaneous and exothermic. Recovery assay showed that more than 98% of the nitrate ion exchanged by the nanocomposite was regenerated and nanocomposite could be reused seven cycles without efficacy reducing significantly. The nanocomposite showed excellent antibacterial activity against Staphylococcus aureus and Escherichia coli cells, with minimum inhibitory concentrations of 62.5 and 125 μg mL−1, and zone of growth inhibition of 17.5 ± 0.5 and 10.5 ± 0.5 mm, respectively. The results represented that the introduced nanocomposite is a useful material for the removal of nitrate ions from aqueous solution and has antibacterial properties.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.