{"title":"利用事件行为模型进行复杂事件识别和异常检测","authors":"Min-Chang Liu, Fang-Rong Hsu, Chua-Huang Huang","doi":"10.1007/s10044-024-01275-y","DOIUrl":null,"url":null,"abstract":"<p>The concept of complex event processing refers to the process of tracking and analyzing a set of related events and drawing conclusions from them. For such systems, complex event recognition is essential. The object of complex event recognition is to recognize meaningful events or patterns and construct processing rules to respond to them. Researchers have conducted numerous studies on the recognition of complex event patterns by using recognition languages or models. However, the completeness of the process in complex event recognition has rarely been discussed. Although the reality of the event is uncertain, the structure for modeling and explaining complex event interactions of contingent information remains unclear. In this study, we focused on developing a general framework for addressing these problems and demonstrating the applicability of model-based approaches to represent spatio-temporal dimensions and causality in complex event recognition. In this paper, we propose an event behavior model for complex event recognition from a process perspective. The developed model could detect and explain anomalies associated with complex events. An experiment was conducted to evaluate the model performance. The results revealed that temporal operations within overlapping events were crucial to event pattern recognition.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"11 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex event recognition and anomaly detection with event behavior model\",\"authors\":\"Min-Chang Liu, Fang-Rong Hsu, Chua-Huang Huang\",\"doi\":\"10.1007/s10044-024-01275-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The concept of complex event processing refers to the process of tracking and analyzing a set of related events and drawing conclusions from them. For such systems, complex event recognition is essential. The object of complex event recognition is to recognize meaningful events or patterns and construct processing rules to respond to them. Researchers have conducted numerous studies on the recognition of complex event patterns by using recognition languages or models. However, the completeness of the process in complex event recognition has rarely been discussed. Although the reality of the event is uncertain, the structure for modeling and explaining complex event interactions of contingent information remains unclear. In this study, we focused on developing a general framework for addressing these problems and demonstrating the applicability of model-based approaches to represent spatio-temporal dimensions and causality in complex event recognition. In this paper, we propose an event behavior model for complex event recognition from a process perspective. The developed model could detect and explain anomalies associated with complex events. An experiment was conducted to evaluate the model performance. The results revealed that temporal operations within overlapping events were crucial to event pattern recognition.</p>\",\"PeriodicalId\":54639,\"journal\":{\"name\":\"Pattern Analysis and Applications\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Analysis and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10044-024-01275-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01275-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Complex event recognition and anomaly detection with event behavior model
The concept of complex event processing refers to the process of tracking and analyzing a set of related events and drawing conclusions from them. For such systems, complex event recognition is essential. The object of complex event recognition is to recognize meaningful events or patterns and construct processing rules to respond to them. Researchers have conducted numerous studies on the recognition of complex event patterns by using recognition languages or models. However, the completeness of the process in complex event recognition has rarely been discussed. Although the reality of the event is uncertain, the structure for modeling and explaining complex event interactions of contingent information remains unclear. In this study, we focused on developing a general framework for addressing these problems and demonstrating the applicability of model-based approaches to represent spatio-temporal dimensions and causality in complex event recognition. In this paper, we propose an event behavior model for complex event recognition from a process perspective. The developed model could detect and explain anomalies associated with complex events. An experiment was conducted to evaluate the model performance. The results revealed that temporal operations within overlapping events were crucial to event pattern recognition.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.