{"title":"了解燃料对消防泡沫表面活性剂微观结构的影响","authors":"Rezawana Islam, Brian Y. Lattimer","doi":"10.1007/s10694-024-01577-x","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous film-forming foam is being phased out due to the environmental impacts of fluorinated surfactants contained in the firefighting foams. To develop an environmentally friendly firefighting foam, it is important to understand the factors controlling the firefighting performance of surfactants. Fuel transport through foam has been considered as a dominant mechanism for foam collapse. Therefore, the impact of fuels (heptane, octane and trimethylbenzene (TMB)) on surfactant microstructure was studied for three different types of surfactants (Capstone, Glucopon, and siloxane) that have applications in firefighting foam. Multiple techniques were used to identify the microstructure and interfacial properties of surfactants with and without exposure to liquid fuel. The ignition time of fuel vapor through foam and solubility of fuel through liquid surfactant solution were measured as well. This work shows fuel solubility has an impact on the surfactant microstructure and interfacial properties. In addition, fuel solubility and vapor pressure affect the ignition time of fuel vapors.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 5","pages":"3413 - 3441"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10694-024-01577-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Understanding the Impact of Fuel on Surfactant Microstructure of Firefighting Foam\",\"authors\":\"Rezawana Islam, Brian Y. Lattimer\",\"doi\":\"10.1007/s10694-024-01577-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aqueous film-forming foam is being phased out due to the environmental impacts of fluorinated surfactants contained in the firefighting foams. To develop an environmentally friendly firefighting foam, it is important to understand the factors controlling the firefighting performance of surfactants. Fuel transport through foam has been considered as a dominant mechanism for foam collapse. Therefore, the impact of fuels (heptane, octane and trimethylbenzene (TMB)) on surfactant microstructure was studied for three different types of surfactants (Capstone, Glucopon, and siloxane) that have applications in firefighting foam. Multiple techniques were used to identify the microstructure and interfacial properties of surfactants with and without exposure to liquid fuel. The ignition time of fuel vapor through foam and solubility of fuel through liquid surfactant solution were measured as well. This work shows fuel solubility has an impact on the surfactant microstructure and interfacial properties. In addition, fuel solubility and vapor pressure affect the ignition time of fuel vapors.</p></div>\",\"PeriodicalId\":558,\"journal\":{\"name\":\"Fire Technology\",\"volume\":\"60 5\",\"pages\":\"3413 - 3441\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10694-024-01577-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10694-024-01577-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-024-01577-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Understanding the Impact of Fuel on Surfactant Microstructure of Firefighting Foam
Aqueous film-forming foam is being phased out due to the environmental impacts of fluorinated surfactants contained in the firefighting foams. To develop an environmentally friendly firefighting foam, it is important to understand the factors controlling the firefighting performance of surfactants. Fuel transport through foam has been considered as a dominant mechanism for foam collapse. Therefore, the impact of fuels (heptane, octane and trimethylbenzene (TMB)) on surfactant microstructure was studied for three different types of surfactants (Capstone, Glucopon, and siloxane) that have applications in firefighting foam. Multiple techniques were used to identify the microstructure and interfacial properties of surfactants with and without exposure to liquid fuel. The ignition time of fuel vapor through foam and solubility of fuel through liquid surfactant solution were measured as well. This work shows fuel solubility has an impact on the surfactant microstructure and interfacial properties. In addition, fuel solubility and vapor pressure affect the ignition time of fuel vapors.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.