CAVE:数字减影血管造影中的脑动脉-静脉分割

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Computerized Medical Imaging and Graphics Pub Date : 2024-05-01 DOI:10.1016/j.compmedimag.2024.102392
Ruisheng Su , P. Matthijs van der Sluijs , Yuan Chen , Sandra Cornelissen , Ruben van den Broek , Wim H. van Zwam , Aad van der Lugt , Wiro J. Niessen , Danny Ruijters , Theo van Walsum
{"title":"CAVE:数字减影血管造影中的脑动脉-静脉分割","authors":"Ruisheng Su ,&nbsp;P. Matthijs van der Sluijs ,&nbsp;Yuan Chen ,&nbsp;Sandra Cornelissen ,&nbsp;Ruben van den Broek ,&nbsp;Wim H. van Zwam ,&nbsp;Aad van der Lugt ,&nbsp;Wiro J. Niessen ,&nbsp;Danny Ruijters ,&nbsp;Theo van Walsum","doi":"10.1016/j.compmedimag.2024.102392","DOIUrl":null,"url":null,"abstract":"<div><p>Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery–vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (<span><math><mo>±</mo></math></span>0.04) and an artery–vein segmentation Dice of 0.79 (<span><math><mo>±</mo></math></span>0.06). CAVE surpasses traditional Frangi-based <span><math><mi>k</mi></math></span>-means clustering (P <span><math><mo>&lt;</mo></math></span> 0.001) and U-Net (P <span><math><mo>&lt;</mo></math></span> 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery–vein segmentation in DSA using deep learning. The code is publicly available at <span>https://github.com/RuishengSu/CAVE_DSA</span><svg><path></path></svg>.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102392"},"PeriodicalIF":5.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0895611124000697/pdfft?md5=b8c9ddb6b9334a5a30392653d4a487b2&pid=1-s2.0-S0895611124000697-main.pdf","citationCount":"0","resultStr":"{\"title\":\"CAVE: Cerebral artery–vein segmentation in digital subtraction angiography\",\"authors\":\"Ruisheng Su ,&nbsp;P. Matthijs van der Sluijs ,&nbsp;Yuan Chen ,&nbsp;Sandra Cornelissen ,&nbsp;Ruben van den Broek ,&nbsp;Wim H. van Zwam ,&nbsp;Aad van der Lugt ,&nbsp;Wiro J. Niessen ,&nbsp;Danny Ruijters ,&nbsp;Theo van Walsum\",\"doi\":\"10.1016/j.compmedimag.2024.102392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery–vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (<span><math><mo>±</mo></math></span>0.04) and an artery–vein segmentation Dice of 0.79 (<span><math><mo>±</mo></math></span>0.06). CAVE surpasses traditional Frangi-based <span><math><mi>k</mi></math></span>-means clustering (P <span><math><mo>&lt;</mo></math></span> 0.001) and U-Net (P <span><math><mo>&lt;</mo></math></span> 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery–vein segmentation in DSA using deep learning. The code is publicly available at <span>https://github.com/RuishengSu/CAVE_DSA</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"115 \",\"pages\":\"Article 102392\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0895611124000697/pdfft?md5=b8c9ddb6b9334a5a30392653d4a487b2&pid=1-s2.0-S0895611124000697-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124000697\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000697","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

脑 X 射线数字减影血管造影术(DSA)是一种广泛应用于神经血管疾病患者的成像技术,可实现高时空分辨率的血管和血流可视化。DSA 中的自动动脉血管分割在血管分析和定量生物标记物提取中起着基础性作用,有助于广泛的临床应用。在静态 DSA 帧上广泛采用的 U-Net 通常难以将血管与减影伪影分离。此外,由于它忽略了 DSA 固有的时间视角,因此无法有效分离动脉和静脉。为了解决这些局限性,我们建议同时利用空间血管和时间脑流特征来分割 DSA 中的动脉和静脉。我们提出的网络被称为 CAVE,它使用空间模块对二维+时间 DSA 序列进行编码,使用时间模块对所有特征进行聚合,并将其解码为二维分割图。在一个大型多中心临床数据集上,CAVE 的血管分割 Dice 为 0.84(±0.04),动脉-静脉分割 Dice 为 0.79(±0.06)。CAVE 显著超越了传统的基于 Frangi 的 k-means 聚类(P < 0.001)和 U-Net(P < 0.001),显示了采集时空特征的优势。本研究是首次利用深度学习对 DSA 中的动脉血管进行自动分割的研究。代码可在 https://github.com/RuishengSu/CAVE_DSA 公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CAVE: Cerebral artery–vein segmentation in digital subtraction angiography

Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery–vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery–vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery–vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
期刊最新文献
Exploring transformer reliability in clinically significant prostate cancer segmentation: A comprehensive in-depth investigation. DSIFNet: Implicit feature network for nasal cavity and vestibule segmentation from 3D head CT AFSegNet: few-shot 3D ankle-foot bone segmentation via hierarchical feature distillation and multi-scale attention and fusion VLFATRollout: Fully transformer-based classifier for retinal OCT volumes WISE: Efficient WSI selection for active learning in histopathology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1