{"title":"最大活载荷的全局敏感性分析及其应用","authors":"Chi Xu , Jun Chen , Jie Li","doi":"10.1016/j.strusafe.2024.102476","DOIUrl":null,"url":null,"abstract":"<div><p>The design live loads are determined by the probability distribution of the maximum live load, which is influenced by the amplitudes and time intervals of various sustained and extraordinary loads. If the relative impact of different input variables on the maximum can be clarified, more targeted load surveys and modeling can be achieved. However, there is currently no global sensitivity analysis that simultaneously considers all input variables. In this study, the probability density function of the maximum live load is determined using the load coincidence principle and probability density evolution method. The relative entropy is employed as a measure for conducting a global sensitivity analysis across five common building occupancy types. The results indicate a significant imbalance in the impact of different input variables. The load amplitudes have a much greater effect than the time intervals. Among various load amplitudes, those related to the extraordinary loads often have the most significant impact. Regarding the time intervals, the occurrence intervals corresponding to the extraordinary loads caused by furniture stacking and normal crowding consistently have the least influence. For the time intervals with minimal impact, it is suggested to treat them as deterministic values in the live load modeling. This treatment has a negligible impact (not exceeding 10%) on the mean and upper fractile of the maximum, which are generally used for design in load codes.</p></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"109 ","pages":"Article 102476"},"PeriodicalIF":5.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global sensitivity analysis of the maximum live load and its applications\",\"authors\":\"Chi Xu , Jun Chen , Jie Li\",\"doi\":\"10.1016/j.strusafe.2024.102476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The design live loads are determined by the probability distribution of the maximum live load, which is influenced by the amplitudes and time intervals of various sustained and extraordinary loads. If the relative impact of different input variables on the maximum can be clarified, more targeted load surveys and modeling can be achieved. However, there is currently no global sensitivity analysis that simultaneously considers all input variables. In this study, the probability density function of the maximum live load is determined using the load coincidence principle and probability density evolution method. The relative entropy is employed as a measure for conducting a global sensitivity analysis across five common building occupancy types. The results indicate a significant imbalance in the impact of different input variables. The load amplitudes have a much greater effect than the time intervals. Among various load amplitudes, those related to the extraordinary loads often have the most significant impact. Regarding the time intervals, the occurrence intervals corresponding to the extraordinary loads caused by furniture stacking and normal crowding consistently have the least influence. For the time intervals with minimal impact, it is suggested to treat them as deterministic values in the live load modeling. This treatment has a negligible impact (not exceeding 10%) on the mean and upper fractile of the maximum, which are generally used for design in load codes.</p></div>\",\"PeriodicalId\":21978,\"journal\":{\"name\":\"Structural Safety\",\"volume\":\"109 \",\"pages\":\"Article 102476\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016747302400047X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016747302400047X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Global sensitivity analysis of the maximum live load and its applications
The design live loads are determined by the probability distribution of the maximum live load, which is influenced by the amplitudes and time intervals of various sustained and extraordinary loads. If the relative impact of different input variables on the maximum can be clarified, more targeted load surveys and modeling can be achieved. However, there is currently no global sensitivity analysis that simultaneously considers all input variables. In this study, the probability density function of the maximum live load is determined using the load coincidence principle and probability density evolution method. The relative entropy is employed as a measure for conducting a global sensitivity analysis across five common building occupancy types. The results indicate a significant imbalance in the impact of different input variables. The load amplitudes have a much greater effect than the time intervals. Among various load amplitudes, those related to the extraordinary loads often have the most significant impact. Regarding the time intervals, the occurrence intervals corresponding to the extraordinary loads caused by furniture stacking and normal crowding consistently have the least influence. For the time intervals with minimal impact, it is suggested to treat them as deterministic values in the live load modeling. This treatment has a negligible impact (not exceeding 10%) on the mean and upper fractile of the maximum, which are generally used for design in load codes.
期刊介绍:
Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment