设计硅基金属-绝缘体-半导体结的氧化硅界面层,用于光电化学制氢

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Catalysis Pub Date : 2024-05-04 DOI:10.1016/j.jcat.2024.115533
Yao Li , Chenglong Ding , Yanming Li , Jiongchong Fang , Guosong Zeng , Jingfu He , Changli Li
{"title":"设计硅基金属-绝缘体-半导体结的氧化硅界面层,用于光电化学制氢","authors":"Yao Li ,&nbsp;Chenglong Ding ,&nbsp;Yanming Li ,&nbsp;Jiongchong Fang ,&nbsp;Guosong Zeng ,&nbsp;Jingfu He ,&nbsp;Changli Li","doi":"10.1016/j.jcat.2024.115533","DOIUrl":null,"url":null,"abstract":"<div><p>Photoelectrochemical (PEC) water splitting provides a potential method to produce renewable hydrogen energy, but there is still plenty of room for improving the efficiency and stability of photoelectrodes. In this paper, we present a metal–insulator-semiconductor (MIS) structure based on p-Si that enables stable and efficient water splitting by engineering the interfacial insulating layer. The silicon oxide (SiO<em><sub>x</sub></em>) film with appropriate thickness and low defects is regrown by a chemical oxidation process, which provides a high-quality insulating layer to passivate the p-Si. The carrier flux, barrier height and interfacial resistance of p-Si based MIS junction can be systematically tuned by controlling the thickness and quality of SiO<em><sub>x</sub></em> layer. Under AM 1.5G illumination, the optimized p-Si/SiO<em><sub>x</sub></em>/Ti/Pt photoelectrode shows an onset potential of 0.5 V <em>vs.</em> RHE, a maximum photocurrent of 28 mA/cm<sup>2</sup> and a high applied bias photon-to-current efficiency (ABPE) of 6 %. These results have significant implications for constructing MIS photoelectrodes towards effective water splitting.</p></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering the SiOx interfacial layer of Si-based metal-insulator-semiconductor junction for photoelectrochemical hydrogen production\",\"authors\":\"Yao Li ,&nbsp;Chenglong Ding ,&nbsp;Yanming Li ,&nbsp;Jiongchong Fang ,&nbsp;Guosong Zeng ,&nbsp;Jingfu He ,&nbsp;Changli Li\",\"doi\":\"10.1016/j.jcat.2024.115533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photoelectrochemical (PEC) water splitting provides a potential method to produce renewable hydrogen energy, but there is still plenty of room for improving the efficiency and stability of photoelectrodes. In this paper, we present a metal–insulator-semiconductor (MIS) structure based on p-Si that enables stable and efficient water splitting by engineering the interfacial insulating layer. The silicon oxide (SiO<em><sub>x</sub></em>) film with appropriate thickness and low defects is regrown by a chemical oxidation process, which provides a high-quality insulating layer to passivate the p-Si. The carrier flux, barrier height and interfacial resistance of p-Si based MIS junction can be systematically tuned by controlling the thickness and quality of SiO<em><sub>x</sub></em> layer. Under AM 1.5G illumination, the optimized p-Si/SiO<em><sub>x</sub></em>/Ti/Pt photoelectrode shows an onset potential of 0.5 V <em>vs.</em> RHE, a maximum photocurrent of 28 mA/cm<sup>2</sup> and a high applied bias photon-to-current efficiency (ABPE) of 6 %. These results have significant implications for constructing MIS photoelectrodes towards effective water splitting.</p></div>\",\"PeriodicalId\":346,\"journal\":{\"name\":\"Journal of Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002195172400246X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002195172400246X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光电化学(PEC)分水技术为生产可再生氢能提供了一种潜在的方法,但在提高光电极的效率和稳定性方面仍有很大的改进空间。在本文中,我们介绍了一种基于对硅的金属-绝缘体-半导体(MIS)结构,该结构通过对界面绝缘层的工程设计实现了稳定高效的水分离。通过化学氧化工艺重新生长出厚度合适、缺陷较少的氧化硅(SiOx)薄膜,为对硅提供了高质量的钝化绝缘层。通过控制氧化硅层的厚度和质量,可以系统地调整基于对硅的 MIS 结的载流子通量、阻挡层高度和界面电阻。在 AM 1.5G 光照下,优化的对硅/氧化硅/钛/铂光电极的起始电位为 0.5 V,最大光电流为 28 mA/cm2,外加偏压光子对电流效率 (ABPE) 高达 6%。这些结果对于构建 MIS 光电极以实现有效的水分离具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineering the SiOx interfacial layer of Si-based metal-insulator-semiconductor junction for photoelectrochemical hydrogen production

Photoelectrochemical (PEC) water splitting provides a potential method to produce renewable hydrogen energy, but there is still plenty of room for improving the efficiency and stability of photoelectrodes. In this paper, we present a metal–insulator-semiconductor (MIS) structure based on p-Si that enables stable and efficient water splitting by engineering the interfacial insulating layer. The silicon oxide (SiOx) film with appropriate thickness and low defects is regrown by a chemical oxidation process, which provides a high-quality insulating layer to passivate the p-Si. The carrier flux, barrier height and interfacial resistance of p-Si based MIS junction can be systematically tuned by controlling the thickness and quality of SiOx layer. Under AM 1.5G illumination, the optimized p-Si/SiOx/Ti/Pt photoelectrode shows an onset potential of 0.5 V vs. RHE, a maximum photocurrent of 28 mA/cm2 and a high applied bias photon-to-current efficiency (ABPE) of 6 %. These results have significant implications for constructing MIS photoelectrodes towards effective water splitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
期刊最新文献
On the secondary promotion effect of Al and Ga on Cu/ZnO methanol synthesis catalysts Effect of 4,4′-dialkyl-2,2′-bipyridine ligands on the hydrolysis of dichlorodioxomolybdenum(VI) catalyst precursors and the switch from homogeneous epoxidation to heterogeneous systems Ligand engineering regulates the electronic structure of Ni-N-C sites to promote electrocatalytic acetylene semi-hydrogenation Structure sensitivity in the formic acid-driven catalytic transfer hydrogenation of maleic acid to succinic acid over Pd/catalysts Palladium-Catalyzed branch hydroaminocarbonylation of terminal alkynes with nitroarenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1