{"title":"花岗岩岩体顶板下的柱状节理带:日本西南部的奥越山花岗岩","authors":"Masahiro Chigira, Hironori Kato","doi":"10.1111/iar.12524","DOIUrl":null,"url":null,"abstract":"<p>Igneous rocks are fractured during cooling from magma to form cooling joints, which are typically columnar joints in volcanic rocks, while orthogonal joints are considered typical for plutonic rocks. We performed a 3D study of joint systems in a granitic batholith of the Okueyama granite in western Japan, which has its roof and its internal structures from the roof to 1000 m downward exposed. We used an unmanned aerial vehicle (UAV) to observe the joints in outcrops from various angles. Based on our study, we propose a schematic model for joint systems in a granitic pluton. A granitic pluton has zones of rock columns below the roof and next to the wall. The rock column zone below the roof is as thick as 300 m, and its higher portions form steep cliffs, probably because of increased resistance to weathering. The axes of the rock columns are nearly vertical below the roof and gently plunge next to the walls, with high intersection angles with the wall. The distribution of columnar joints near only the roof and walls suggests that the granite cooled more rapidly near the roof and walls than in the core of the pluton. When the granite was jointed by parallel joints during cooling, the rock slabs between the parallel joints near the roof and the walls are subdivided into columns with polygonal cross-sections. This suggests that the granite was fractured by parallel joints at a temperature immediately below the solidus, after which the rock slabs were subdivided into rock columns during further cooling.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"33 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/iar.12524","citationCount":"0","resultStr":"{\"title\":\"A zone of columnar joints beneath the roof of a granitic pluton: The Okueyama granite, southwestern Japan\",\"authors\":\"Masahiro Chigira, Hironori Kato\",\"doi\":\"10.1111/iar.12524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Igneous rocks are fractured during cooling from magma to form cooling joints, which are typically columnar joints in volcanic rocks, while orthogonal joints are considered typical for plutonic rocks. We performed a 3D study of joint systems in a granitic batholith of the Okueyama granite in western Japan, which has its roof and its internal structures from the roof to 1000 m downward exposed. We used an unmanned aerial vehicle (UAV) to observe the joints in outcrops from various angles. Based on our study, we propose a schematic model for joint systems in a granitic pluton. A granitic pluton has zones of rock columns below the roof and next to the wall. The rock column zone below the roof is as thick as 300 m, and its higher portions form steep cliffs, probably because of increased resistance to weathering. The axes of the rock columns are nearly vertical below the roof and gently plunge next to the walls, with high intersection angles with the wall. The distribution of columnar joints near only the roof and walls suggests that the granite cooled more rapidly near the roof and walls than in the core of the pluton. When the granite was jointed by parallel joints during cooling, the rock slabs between the parallel joints near the roof and the walls are subdivided into columns with polygonal cross-sections. This suggests that the granite was fractured by parallel joints at a temperature immediately below the solidus, after which the rock slabs were subdivided into rock columns during further cooling.</p>\",\"PeriodicalId\":14791,\"journal\":{\"name\":\"Island Arc\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/iar.12524\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Island Arc\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iar.12524\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.12524","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
A zone of columnar joints beneath the roof of a granitic pluton: The Okueyama granite, southwestern Japan
Igneous rocks are fractured during cooling from magma to form cooling joints, which are typically columnar joints in volcanic rocks, while orthogonal joints are considered typical for plutonic rocks. We performed a 3D study of joint systems in a granitic batholith of the Okueyama granite in western Japan, which has its roof and its internal structures from the roof to 1000 m downward exposed. We used an unmanned aerial vehicle (UAV) to observe the joints in outcrops from various angles. Based on our study, we propose a schematic model for joint systems in a granitic pluton. A granitic pluton has zones of rock columns below the roof and next to the wall. The rock column zone below the roof is as thick as 300 m, and its higher portions form steep cliffs, probably because of increased resistance to weathering. The axes of the rock columns are nearly vertical below the roof and gently plunge next to the walls, with high intersection angles with the wall. The distribution of columnar joints near only the roof and walls suggests that the granite cooled more rapidly near the roof and walls than in the core of the pluton. When the granite was jointed by parallel joints during cooling, the rock slabs between the parallel joints near the roof and the walls are subdivided into columns with polygonal cross-sections. This suggests that the granite was fractured by parallel joints at a temperature immediately below the solidus, after which the rock slabs were subdivided into rock columns during further cooling.
期刊介绍:
Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication.
Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.