用于高效光电化学水氧化的核/壳 Bi2S3/BiVO4 纳米结构。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-10-21 Epub Date: 2024-06-07 DOI:10.1002/cssc.202400515
Yuli Xiong, Duo Zhang, Xiaoxuan Zhao, Bo Peng, Peng Yu, Zhenxiang Cheng
{"title":"用于高效光电化学水氧化的核/壳 Bi2S3/BiVO4 纳米结构。","authors":"Yuli Xiong, Duo Zhang, Xiaoxuan Zhao, Bo Peng, Peng Yu, Zhenxiang Cheng","doi":"10.1002/cssc.202400515","DOIUrl":null,"url":null,"abstract":"<p><p>The construction of nanostructured heterostructure is a potent strategy for achieving high-performance photoelectrochemical (PEC) water splitting. Among these, constructing BiVO<sub>4</sub>-based heterostructure stands out as a promising method for optimizing light-harvesting efficiency and reducing severe charge recombination. Herein, we present a novel approach to fabricate a type II heterostructure of core/shell Bi<sub>2</sub>S<sub>3</sub>/BiVO<sub>4</sub> using electrolytic deposition and successive ionic layer adsorption and reaction (SILAR) methods. We identify the type II heterostructure and the difference in fermi energy using UV-Vis spectroscopy, X-ray photoelectron spectroscopy, and PEC measurements. This redistribution of charges due to the fermi energy difference induces an interfacial built-in electric field from BiVO<sub>4</sub> to Bi<sub>2</sub>S<sub>3</sub>, reinforcing the photogenerated hole transfer kinetics from BiVO<sub>4</sub> to Bi<sub>2</sub>S<sub>3</sub>. The Bi<sub>2</sub>S<sub>3</sub>/BiVO<sub>4</sub> heterostructure exhibits a superior photocurrent (6.0 mA cm<sup>-2</sup>), enhanced charge separation efficiency (85 %), and higher open-circuit photovoltage (350 mV). Additionally, the heterostructure displays a prolonged average lifetime of charge (1.63 ns), verifying this heterojunction could boost interfacial carriers' migration via an additional nonradiative quenching pathway. Furthermore, the lower photoluminescence (PL) intensity demonstrates the interfacial built-in electric field is beneficial for boosting charge migration.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Core/Shell Bi<sub>2</sub>S<sub>3</sub>/BiVO<sub>4</sub> Nanoarchitecture for Efficient Photoelectrochemical Water Oxidation.\",\"authors\":\"Yuli Xiong, Duo Zhang, Xiaoxuan Zhao, Bo Peng, Peng Yu, Zhenxiang Cheng\",\"doi\":\"10.1002/cssc.202400515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The construction of nanostructured heterostructure is a potent strategy for achieving high-performance photoelectrochemical (PEC) water splitting. Among these, constructing BiVO<sub>4</sub>-based heterostructure stands out as a promising method for optimizing light-harvesting efficiency and reducing severe charge recombination. Herein, we present a novel approach to fabricate a type II heterostructure of core/shell Bi<sub>2</sub>S<sub>3</sub>/BiVO<sub>4</sub> using electrolytic deposition and successive ionic layer adsorption and reaction (SILAR) methods. We identify the type II heterostructure and the difference in fermi energy using UV-Vis spectroscopy, X-ray photoelectron spectroscopy, and PEC measurements. This redistribution of charges due to the fermi energy difference induces an interfacial built-in electric field from BiVO<sub>4</sub> to Bi<sub>2</sub>S<sub>3</sub>, reinforcing the photogenerated hole transfer kinetics from BiVO<sub>4</sub> to Bi<sub>2</sub>S<sub>3</sub>. The Bi<sub>2</sub>S<sub>3</sub>/BiVO<sub>4</sub> heterostructure exhibits a superior photocurrent (6.0 mA cm<sup>-2</sup>), enhanced charge separation efficiency (85 %), and higher open-circuit photovoltage (350 mV). Additionally, the heterostructure displays a prolonged average lifetime of charge (1.63 ns), verifying this heterojunction could boost interfacial carriers' migration via an additional nonradiative quenching pathway. Furthermore, the lower photoluminescence (PL) intensity demonstrates the interfacial built-in electric field is beneficial for boosting charge migration.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202400515\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202400515","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

构建纳米异质结构是实现高性能光电化学(PEC)水分离的有效策略。其中,构建基于 BiVO4 的异质结构是优化光收集效率和减少严重电荷重组的有效方法。在此,我们介绍了一种利用电解沉积和连续离子层吸附与反应(SILAR)方法制造核/壳 Bi2S3/BiVO4 二型异质结构的新方法。我们利用紫外可见光谱、X 射线光电子能谱和 PEC 测量方法确定了 II 型异质结构和费米能的差异。费米能差导致的电荷再分配诱发了从 BiVO4 到 Bi2S3 的界面内置电场,加强了从 BiVO4 到 Bi2S3 的光生空穴传输动力学。Bi2S3/BiVO4 异质结构具有出色的光电流(6.0 mA cm-2)、更高的电荷分离效率(85%)和更高的开路光电压(350 mV)。此外,异质结构还显示出较长的电荷平均寿命(1.63 ns),验证了这种异质结可以通过额外的非辐射淬火途径促进界面载流子迁移。此外,较低的光致发光(PL)强度表明,界面内置电场有利于促进电荷迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Core/Shell Bi2S3/BiVO4 Nanoarchitecture for Efficient Photoelectrochemical Water Oxidation.

The construction of nanostructured heterostructure is a potent strategy for achieving high-performance photoelectrochemical (PEC) water splitting. Among these, constructing BiVO4-based heterostructure stands out as a promising method for optimizing light-harvesting efficiency and reducing severe charge recombination. Herein, we present a novel approach to fabricate a type II heterostructure of core/shell Bi2S3/BiVO4 using electrolytic deposition and successive ionic layer adsorption and reaction (SILAR) methods. We identify the type II heterostructure and the difference in fermi energy using UV-Vis spectroscopy, X-ray photoelectron spectroscopy, and PEC measurements. This redistribution of charges due to the fermi energy difference induces an interfacial built-in electric field from BiVO4 to Bi2S3, reinforcing the photogenerated hole transfer kinetics from BiVO4 to Bi2S3. The Bi2S3/BiVO4 heterostructure exhibits a superior photocurrent (6.0 mA cm-2), enhanced charge separation efficiency (85 %), and higher open-circuit photovoltage (350 mV). Additionally, the heterostructure displays a prolonged average lifetime of charge (1.63 ns), verifying this heterojunction could boost interfacial carriers' migration via an additional nonradiative quenching pathway. Furthermore, the lower photoluminescence (PL) intensity demonstrates the interfacial built-in electric field is beneficial for boosting charge migration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
New Redox Chemistries of Halogens in Aqueous Batteries. A Core/Shell Bi2S3/BiVO4 Nanoarchitecture for Efficient Photoelectrochemical Water Oxidation. Cathodic Conversion of Pressurized CO2 at Silver Cathodes: What are the Optimal Values of Pressure and Current Density? In Situ Spectroelectrochemical Study of Acetate Formation by CO2 Reduction Using Bi Catalyst in Amine-Based Capture Solution. Developing Polymeric Carbon Nitrides for Photocatalytic H2O2 Production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1