{"title":"男性肺动脉高压患者体内长非编码 RNA Xist 的表达失调","authors":"","doi":"10.1016/j.ajpath.2024.04.005","DOIUrl":null,"url":null,"abstract":"<div><p>Pulmonary arterial hypertension (PAH) is a sex-biased disease with female sex as a significant risk factor. Increased expression of the long noncoding RNA X-inactive–specific transcript (Xist), as induced by an intersectin-1s protein fragment with proliferative potential (EH<sub>ITSN</sub>), may explain the sexual dimorphism of female pulmonary artery endothelial cells (ECs) and at least in part, the imbalance sex/ratio of PAH. Xist is essential for X-chromosome inactivation and dosage compensation of X-linked genes. Herein, increased Xist expression was detected in a subset of ECs and lung tissue samples of male patients with PAH. The role of different Xist expression levels in ECs of male patients with PAH (EC<sub>PAH</sub>) was studied in several lines of male EC<sub>PAH</sub> in conjunction with molecular, biochemical, morphologic, and functional approaches. Male EC<sub>PAH</sub> showed on average 10.3-fold increase in high Xist versus low Xist, a significant association between Xist levels and their proliferative potential, and a heterogeneous methylation of the Xist/XIST antisense RNA (Tsix) locus. Interestingly, Xist up-regulation in male EC<sub>PAH</sub> decreased the expression of Krueppel-like factor 2 (Klf2), via EH<sub>ITSN</sub> interaction with enhancer of zeste polycomb repressive complex 2 subunit (EZH2), the catalytic subunit of the polycomb repressive complex 2. Moreover, the studies demonstrate that EH<sub>ITSN</sub>-triggered p38/ETS domain-containing protein Elk1/AP-1 transcription factor subunit (c-Fos) signaling is a pathologic mechanism central to EC<sub>PAH</sub> proliferation and the dynamic crosstalk with cell cycle regulatory proteins cyclin A1/cyclin D2 and Xist-EZH2-Klf2 interaction participate directly and differentially in establishing the proliferative profile of male EC<sub>PAH</sub>.</p></div>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284765/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dysregulation of the Long Noncoding RNA X-Inactive–Specific Transcript Expression in Male Patients with Pulmonary Arterial Hypertension\",\"authors\":\"\",\"doi\":\"10.1016/j.ajpath.2024.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pulmonary arterial hypertension (PAH) is a sex-biased disease with female sex as a significant risk factor. Increased expression of the long noncoding RNA X-inactive–specific transcript (Xist), as induced by an intersectin-1s protein fragment with proliferative potential (EH<sub>ITSN</sub>), may explain the sexual dimorphism of female pulmonary artery endothelial cells (ECs) and at least in part, the imbalance sex/ratio of PAH. Xist is essential for X-chromosome inactivation and dosage compensation of X-linked genes. Herein, increased Xist expression was detected in a subset of ECs and lung tissue samples of male patients with PAH. The role of different Xist expression levels in ECs of male patients with PAH (EC<sub>PAH</sub>) was studied in several lines of male EC<sub>PAH</sub> in conjunction with molecular, biochemical, morphologic, and functional approaches. Male EC<sub>PAH</sub> showed on average 10.3-fold increase in high Xist versus low Xist, a significant association between Xist levels and their proliferative potential, and a heterogeneous methylation of the Xist/XIST antisense RNA (Tsix) locus. Interestingly, Xist up-regulation in male EC<sub>PAH</sub> decreased the expression of Krueppel-like factor 2 (Klf2), via EH<sub>ITSN</sub> interaction with enhancer of zeste polycomb repressive complex 2 subunit (EZH2), the catalytic subunit of the polycomb repressive complex 2. Moreover, the studies demonstrate that EH<sub>ITSN</sub>-triggered p38/ETS domain-containing protein Elk1/AP-1 transcription factor subunit (c-Fos) signaling is a pathologic mechanism central to EC<sub>PAH</sub> proliferation and the dynamic crosstalk with cell cycle regulatory proteins cyclin A1/cyclin D2 and Xist-EZH2-Klf2 interaction participate directly and differentially in establishing the proliferative profile of male EC<sub>PAH</sub>.</p></div>\",\"PeriodicalId\":7623,\"journal\":{\"name\":\"American Journal of Pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284765/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0002944024001664\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0002944024001664","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
Dysregulation of the Long Noncoding RNA X-Inactive–Specific Transcript Expression in Male Patients with Pulmonary Arterial Hypertension
Pulmonary arterial hypertension (PAH) is a sex-biased disease with female sex as a significant risk factor. Increased expression of the long noncoding RNA X-inactive–specific transcript (Xist), as induced by an intersectin-1s protein fragment with proliferative potential (EHITSN), may explain the sexual dimorphism of female pulmonary artery endothelial cells (ECs) and at least in part, the imbalance sex/ratio of PAH. Xist is essential for X-chromosome inactivation and dosage compensation of X-linked genes. Herein, increased Xist expression was detected in a subset of ECs and lung tissue samples of male patients with PAH. The role of different Xist expression levels in ECs of male patients with PAH (ECPAH) was studied in several lines of male ECPAH in conjunction with molecular, biochemical, morphologic, and functional approaches. Male ECPAH showed on average 10.3-fold increase in high Xist versus low Xist, a significant association between Xist levels and their proliferative potential, and a heterogeneous methylation of the Xist/XIST antisense RNA (Tsix) locus. Interestingly, Xist up-regulation in male ECPAH decreased the expression of Krueppel-like factor 2 (Klf2), via EHITSN interaction with enhancer of zeste polycomb repressive complex 2 subunit (EZH2), the catalytic subunit of the polycomb repressive complex 2. Moreover, the studies demonstrate that EHITSN-triggered p38/ETS domain-containing protein Elk1/AP-1 transcription factor subunit (c-Fos) signaling is a pathologic mechanism central to ECPAH proliferation and the dynamic crosstalk with cell cycle regulatory proteins cyclin A1/cyclin D2 and Xist-EZH2-Klf2 interaction participate directly and differentially in establishing the proliferative profile of male ECPAH.
期刊介绍:
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.