{"title":"磷脂酰肌醇-4,5-二磷酸 3-激酶δ异构体在肝细胞增殖中的新作用","authors":"","doi":"10.1016/j.ajpath.2024.03.016","DOIUrl":null,"url":null,"abstract":"<div><p>The phosphatidylinositol-4,5-bisphosphate 3-kinase delta isoform (<em>Pik3cd</em>), usually considered immune-specific, was unexpectedly identified as a gene potentially related to either regeneration and/or differentiation in animals lacking hepatocellular Integrin Linked Kinase (ILK). Since a specific inhibitor (Idelalisib, or CAL101) for the catalytic subunit encoded by <em>Pik3cd</em> (p110δ) has reported hepatotoxicity when used for treating chronic lymphocytic leukemia and other lymphomas, the authors aimed to elucidate whether there is a role for p110δ in normal liver function. To determine the effect on normal liver regeneration, partial hepatectomy (PHx) was performed using mice in which p110δ was first inhibited using CAL101. Inhibition led to over a 50% decrease in proliferating hepatocytes in the first 2 days after PHx. This difference correlated with phosphorylation changes in the HGF and EGF receptors (MET and EGFR, respectively) and NF-κB signaling. Ingenuity Pathway Analyses implicated C/EBPβ, HGF, and the EGFR heterodimeric partner, ERBB2, as three of the top 20 regulators downstream of p110δ signaling because their pathways were suppressed in the presence of CAL101 at 1 day post-PHx. A regulatory role for p110δ signaling in mouse and rat hepatocytes through MET and EGFR was further verified using hepatocyte primary cultures, in the presence or absence of CAL101. Combined, these data support a role for p110δ as a downstream regulator of normal hepatocytes when stimulated to proliferate.</p></div>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":"194 8","pages":"Pages 1511-1527"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0002944024001688/pdfft?md5=58a04846e124f9df9840ba2646f96f63&pid=1-s2.0-S0002944024001688-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A Novel Role for the Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Delta Isoform in Hepatocellular Proliferation\",\"authors\":\"\",\"doi\":\"10.1016/j.ajpath.2024.03.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The phosphatidylinositol-4,5-bisphosphate 3-kinase delta isoform (<em>Pik3cd</em>), usually considered immune-specific, was unexpectedly identified as a gene potentially related to either regeneration and/or differentiation in animals lacking hepatocellular Integrin Linked Kinase (ILK). Since a specific inhibitor (Idelalisib, or CAL101) for the catalytic subunit encoded by <em>Pik3cd</em> (p110δ) has reported hepatotoxicity when used for treating chronic lymphocytic leukemia and other lymphomas, the authors aimed to elucidate whether there is a role for p110δ in normal liver function. To determine the effect on normal liver regeneration, partial hepatectomy (PHx) was performed using mice in which p110δ was first inhibited using CAL101. Inhibition led to over a 50% decrease in proliferating hepatocytes in the first 2 days after PHx. This difference correlated with phosphorylation changes in the HGF and EGF receptors (MET and EGFR, respectively) and NF-κB signaling. Ingenuity Pathway Analyses implicated C/EBPβ, HGF, and the EGFR heterodimeric partner, ERBB2, as three of the top 20 regulators downstream of p110δ signaling because their pathways were suppressed in the presence of CAL101 at 1 day post-PHx. A regulatory role for p110δ signaling in mouse and rat hepatocytes through MET and EGFR was further verified using hepatocyte primary cultures, in the presence or absence of CAL101. Combined, these data support a role for p110δ as a downstream regulator of normal hepatocytes when stimulated to proliferate.</p></div>\",\"PeriodicalId\":7623,\"journal\":{\"name\":\"American Journal of Pathology\",\"volume\":\"194 8\",\"pages\":\"Pages 1511-1527\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0002944024001688/pdfft?md5=58a04846e124f9df9840ba2646f96f63&pid=1-s2.0-S0002944024001688-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0002944024001688\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0002944024001688","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
A Novel Role for the Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Delta Isoform in Hepatocellular Proliferation
The phosphatidylinositol-4,5-bisphosphate 3-kinase delta isoform (Pik3cd), usually considered immune-specific, was unexpectedly identified as a gene potentially related to either regeneration and/or differentiation in animals lacking hepatocellular Integrin Linked Kinase (ILK). Since a specific inhibitor (Idelalisib, or CAL101) for the catalytic subunit encoded by Pik3cd (p110δ) has reported hepatotoxicity when used for treating chronic lymphocytic leukemia and other lymphomas, the authors aimed to elucidate whether there is a role for p110δ in normal liver function. To determine the effect on normal liver regeneration, partial hepatectomy (PHx) was performed using mice in which p110δ was first inhibited using CAL101. Inhibition led to over a 50% decrease in proliferating hepatocytes in the first 2 days after PHx. This difference correlated with phosphorylation changes in the HGF and EGF receptors (MET and EGFR, respectively) and NF-κB signaling. Ingenuity Pathway Analyses implicated C/EBPβ, HGF, and the EGFR heterodimeric partner, ERBB2, as three of the top 20 regulators downstream of p110δ signaling because their pathways were suppressed in the presence of CAL101 at 1 day post-PHx. A regulatory role for p110δ signaling in mouse and rat hepatocytes through MET and EGFR was further verified using hepatocyte primary cultures, in the presence or absence of CAL101. Combined, these data support a role for p110δ as a downstream regulator of normal hepatocytes when stimulated to proliferate.
期刊介绍:
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.