Tori E Rudolph, Melissa Roths, Alyssa D Freestone, Sau Qwan Yap, Alyona Michael, Robert P Rhoads, Sarah H White-Springer, Lance H Baumgard, Joshua T Selsby
{"title":"生物性别对猪热应激模型中骨骼肌氧化应激的影响","authors":"Tori E Rudolph, Melissa Roths, Alyssa D Freestone, Sau Qwan Yap, Alyona Michael, Robert P Rhoads, Sarah H White-Springer, Lance H Baumgard, Joshua T Selsby","doi":"10.1152/ajpregu.00268.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress contributes to heat stress (HS)-mediated alterations in skeletal muscle; however, the extent to which biological sex mediates oxidative stress during HS remains unknown. We hypothesized muscle from males would be more resistant to oxidative stress caused by HS than muscle from females. To address this, male and female pigs were housed in thermoneutral conditions (TN; 20.8 ± 1.6°C; 62.0 ± 4.7% relative humidity; <i>n</i> = 8/sex) or subjected to HS (39.4 ± 0.6°C; 33.7 ± 6.3% relative humidity) for 1 (HS1; <i>n</i> = 8/sex) or 7 days (HS7; <i>n</i> = 8/sex) followed by collection of the oxidative portion of the semitendinosus. Although HS increased muscle temperature, by 7 days, muscle from heat-stressed females was cooler than muscle from heat-stressed males (0.3°C; <i>P</i> < 0.05). Relative protein abundance of 4-hydroxynonenal (4-HNE)-modified proteins increased in HS1 females compared with TN (<i>P</i> = 0.05). Furthermore, malondialdehyde (MDA)-modified proteins and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentration, a DNA damage marker, was increased in HS7 females compared with TN females (<i>P</i> = 0.05). Enzymatic activities of catalase and superoxide dismutase (SOD) remained similar between groups; however, glutathione peroxidase (GPX) activity decreased in HS7 females compared with TN and HS1 females (<i>P</i> ≤ 0.03) and HS7 males (<i>P</i> = 0.02). Notably, HS increased skeletal muscle Ca<sup>2+</sup> deposition (<i>P</i> = 0.05) and was greater in HS1 females compared with TN females (<i>P</i> < 0.05). Heat stress increased sarco(endo)plasmic reticulum Ca<sup>2+</sup> ATPase (SERCA)2a protein abundance (<i>P</i> < 0.01); however, Ca<sup>2+</sup> ATPase activity remained similar between groups. Overall, despite having lower muscle temperature, muscle from heat-stressed females had increased markers of oxidative stress and calcium deposition than muscle from males following identical environmental exposure.<b>NEW & NOTEWORTHY</b> Heat stress is a global threat to human health and agricultural production. We demonstrated that following 7 days of heat stress, skeletal muscle from females was more susceptible to oxidative stress than muscle from males in a porcine model, despite cooler muscle temperatures. The vulnerability to heat stress-induced oxidative stress in females may be driven, at least in part, by decreased antioxidant capacity and calcium dysregulation.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R578-R587"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381024/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biological sex impacts oxidative stress in skeletal muscle in a porcine heat stress model.\",\"authors\":\"Tori E Rudolph, Melissa Roths, Alyssa D Freestone, Sau Qwan Yap, Alyona Michael, Robert P Rhoads, Sarah H White-Springer, Lance H Baumgard, Joshua T Selsby\",\"doi\":\"10.1152/ajpregu.00268.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxidative stress contributes to heat stress (HS)-mediated alterations in skeletal muscle; however, the extent to which biological sex mediates oxidative stress during HS remains unknown. We hypothesized muscle from males would be more resistant to oxidative stress caused by HS than muscle from females. To address this, male and female pigs were housed in thermoneutral conditions (TN; 20.8 ± 1.6°C; 62.0 ± 4.7% relative humidity; <i>n</i> = 8/sex) or subjected to HS (39.4 ± 0.6°C; 33.7 ± 6.3% relative humidity) for 1 (HS1; <i>n</i> = 8/sex) or 7 days (HS7; <i>n</i> = 8/sex) followed by collection of the oxidative portion of the semitendinosus. Although HS increased muscle temperature, by 7 days, muscle from heat-stressed females was cooler than muscle from heat-stressed males (0.3°C; <i>P</i> < 0.05). Relative protein abundance of 4-hydroxynonenal (4-HNE)-modified proteins increased in HS1 females compared with TN (<i>P</i> = 0.05). Furthermore, malondialdehyde (MDA)-modified proteins and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentration, a DNA damage marker, was increased in HS7 females compared with TN females (<i>P</i> = 0.05). Enzymatic activities of catalase and superoxide dismutase (SOD) remained similar between groups; however, glutathione peroxidase (GPX) activity decreased in HS7 females compared with TN and HS1 females (<i>P</i> ≤ 0.03) and HS7 males (<i>P</i> = 0.02). Notably, HS increased skeletal muscle Ca<sup>2+</sup> deposition (<i>P</i> = 0.05) and was greater in HS1 females compared with TN females (<i>P</i> < 0.05). Heat stress increased sarco(endo)plasmic reticulum Ca<sup>2+</sup> ATPase (SERCA)2a protein abundance (<i>P</i> < 0.01); however, Ca<sup>2+</sup> ATPase activity remained similar between groups. Overall, despite having lower muscle temperature, muscle from heat-stressed females had increased markers of oxidative stress and calcium deposition than muscle from males following identical environmental exposure.<b>NEW & NOTEWORTHY</b> Heat stress is a global threat to human health and agricultural production. We demonstrated that following 7 days of heat stress, skeletal muscle from females was more susceptible to oxidative stress than muscle from males in a porcine model, despite cooler muscle temperatures. The vulnerability to heat stress-induced oxidative stress in females may be driven, at least in part, by decreased antioxidant capacity and calcium dysregulation.</p>\",\"PeriodicalId\":7630,\"journal\":{\"name\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"volume\":\" \",\"pages\":\"R578-R587\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381024/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpregu.00268.2023\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00268.2023","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Biological sex impacts oxidative stress in skeletal muscle in a porcine heat stress model.
Oxidative stress contributes to heat stress (HS)-mediated alterations in skeletal muscle; however, the extent to which biological sex mediates oxidative stress during HS remains unknown. We hypothesized muscle from males would be more resistant to oxidative stress caused by HS than muscle from females. To address this, male and female pigs were housed in thermoneutral conditions (TN; 20.8 ± 1.6°C; 62.0 ± 4.7% relative humidity; n = 8/sex) or subjected to HS (39.4 ± 0.6°C; 33.7 ± 6.3% relative humidity) for 1 (HS1; n = 8/sex) or 7 days (HS7; n = 8/sex) followed by collection of the oxidative portion of the semitendinosus. Although HS increased muscle temperature, by 7 days, muscle from heat-stressed females was cooler than muscle from heat-stressed males (0.3°C; P < 0.05). Relative protein abundance of 4-hydroxynonenal (4-HNE)-modified proteins increased in HS1 females compared with TN (P = 0.05). Furthermore, malondialdehyde (MDA)-modified proteins and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentration, a DNA damage marker, was increased in HS7 females compared with TN females (P = 0.05). Enzymatic activities of catalase and superoxide dismutase (SOD) remained similar between groups; however, glutathione peroxidase (GPX) activity decreased in HS7 females compared with TN and HS1 females (P ≤ 0.03) and HS7 males (P = 0.02). Notably, HS increased skeletal muscle Ca2+ deposition (P = 0.05) and was greater in HS1 females compared with TN females (P < 0.05). Heat stress increased sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA)2a protein abundance (P < 0.01); however, Ca2+ ATPase activity remained similar between groups. Overall, despite having lower muscle temperature, muscle from heat-stressed females had increased markers of oxidative stress and calcium deposition than muscle from males following identical environmental exposure.NEW & NOTEWORTHY Heat stress is a global threat to human health and agricultural production. We demonstrated that following 7 days of heat stress, skeletal muscle from females was more susceptible to oxidative stress than muscle from males in a porcine model, despite cooler muscle temperatures. The vulnerability to heat stress-induced oxidative stress in females may be driven, at least in part, by decreased antioxidant capacity and calcium dysregulation.
期刊介绍:
The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.