{"title":"用张量分解法解决棘手的化学问题","authors":"Nina Glaser, Markus Reiher","doi":"10.2533/chimia.2024.215","DOIUrl":null,"url":null,"abstract":"<p><p>Many complex chemical problems encoded in terms of physics-based models become computationally intractable for traditional numerical approaches due to their unfavorable scaling with increasing molecular size. Tensor decomposition techniques can overcome such challenges by decomposing unattainably large numerical representations of chemical problems into smaller, tractable ones. In the first two decades of this century, algorithms based on such tensor factorizations have become state-of-the-art methods in various branches of computational chemistry, ranging from molecular quantum dynamics to electronic structure theory and machine learning. Here, we consider the role that tensor decomposition schemes have played in expanding the scope of computational chemistry. We relate some of the most prominent methods to their common underlying tensor network formalisms, providing a unified perspective on leading tensor-based approaches in chemistry and materials science.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 4","pages":"215-221"},"PeriodicalIF":1.1000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Intractable Chemical Problems by Tensor Decomposition.\",\"authors\":\"Nina Glaser, Markus Reiher\",\"doi\":\"10.2533/chimia.2024.215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many complex chemical problems encoded in terms of physics-based models become computationally intractable for traditional numerical approaches due to their unfavorable scaling with increasing molecular size. Tensor decomposition techniques can overcome such challenges by decomposing unattainably large numerical representations of chemical problems into smaller, tractable ones. In the first two decades of this century, algorithms based on such tensor factorizations have become state-of-the-art methods in various branches of computational chemistry, ranging from molecular quantum dynamics to electronic structure theory and machine learning. Here, we consider the role that tensor decomposition schemes have played in expanding the scope of computational chemistry. We relate some of the most prominent methods to their common underlying tensor network formalisms, providing a unified perspective on leading tensor-based approaches in chemistry and materials science.</p>\",\"PeriodicalId\":9957,\"journal\":{\"name\":\"Chimia\",\"volume\":\"78 4\",\"pages\":\"215-221\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2533/chimia.2024.215\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimia","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2024.215","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Solving Intractable Chemical Problems by Tensor Decomposition.
Many complex chemical problems encoded in terms of physics-based models become computationally intractable for traditional numerical approaches due to their unfavorable scaling with increasing molecular size. Tensor decomposition techniques can overcome such challenges by decomposing unattainably large numerical representations of chemical problems into smaller, tractable ones. In the first two decades of this century, algorithms based on such tensor factorizations have become state-of-the-art methods in various branches of computational chemistry, ranging from molecular quantum dynamics to electronic structure theory and machine learning. Here, we consider the role that tensor decomposition schemes have played in expanding the scope of computational chemistry. We relate some of the most prominent methods to their common underlying tensor network formalisms, providing a unified perspective on leading tensor-based approaches in chemistry and materials science.
期刊介绍:
CHIMIA, a scientific journal for chemistry in the broadest sense covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.