Saptarshi Chakraborty, Zoe Guan, Colin B Begg, Ronglai Shen
{"title":"主题隐藏基因组:利用贝叶斯多层次语境学习方法发现潜在的癌症突变主题。","authors":"Saptarshi Chakraborty, Zoe Guan, Colin B Begg, Ronglai Shen","doi":"10.1093/biomtc/ujae030","DOIUrl":null,"url":null,"abstract":"<p><p>Inferring the cancer-type specificities of ultra-rare, genome-wide somatic mutations is an open problem. Traditional statistical methods cannot handle such data due to their ultra-high dimensionality and extreme data sparsity. To harness information in rare mutations, we have recently proposed a formal multilevel multilogistic \"hidden genome\" model. Through its hierarchical layers, the model condenses information in ultra-rare mutations through meta-features embodying mutation contexts to characterize cancer types. Consistent, scalable point estimation of the model can incorporate 10s of millions of variants across thousands of tumors and permit impressive prediction and attribution. However, principled statistical inference is infeasible due to the volume, correlation, and noninterpretability of mutation contexts. In this paper, we propose a novel framework that leverages topic models from computational linguistics to effectuate dimension reduction of mutation contexts producing interpretable, decorrelated meta-feature topics. We propose an efficient MCMC algorithm for implementation that permits rigorous full Bayesian inference at a scale that is orders of magnitude beyond the capability of existing out-of-the-box inferential high-dimensional multi-class regression methods and software. Applying our model to the Pan Cancer Analysis of Whole Genomes dataset reveals interesting biological insights including somatic mutational topics associated with UV exposure in skin cancer, aging in colorectal cancer, and strong influence of epigenome organization in liver cancer. Under cross-validation, our model demonstrates highly competitive predictive performance against blackbox methods of random forest and deep learning.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11056772/pdf/","citationCount":"0","resultStr":"{\"title\":\"Topical hidden genome: discovering latent cancer mutational topics using a Bayesian multilevel context-learning approach.\",\"authors\":\"Saptarshi Chakraborty, Zoe Guan, Colin B Begg, Ronglai Shen\",\"doi\":\"10.1093/biomtc/ujae030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inferring the cancer-type specificities of ultra-rare, genome-wide somatic mutations is an open problem. Traditional statistical methods cannot handle such data due to their ultra-high dimensionality and extreme data sparsity. To harness information in rare mutations, we have recently proposed a formal multilevel multilogistic \\\"hidden genome\\\" model. Through its hierarchical layers, the model condenses information in ultra-rare mutations through meta-features embodying mutation contexts to characterize cancer types. Consistent, scalable point estimation of the model can incorporate 10s of millions of variants across thousands of tumors and permit impressive prediction and attribution. However, principled statistical inference is infeasible due to the volume, correlation, and noninterpretability of mutation contexts. In this paper, we propose a novel framework that leverages topic models from computational linguistics to effectuate dimension reduction of mutation contexts producing interpretable, decorrelated meta-feature topics. We propose an efficient MCMC algorithm for implementation that permits rigorous full Bayesian inference at a scale that is orders of magnitude beyond the capability of existing out-of-the-box inferential high-dimensional multi-class regression methods and software. Applying our model to the Pan Cancer Analysis of Whole Genomes dataset reveals interesting biological insights including somatic mutational topics associated with UV exposure in skin cancer, aging in colorectal cancer, and strong influence of epigenome organization in liver cancer. Under cross-validation, our model demonstrates highly competitive predictive performance against blackbox methods of random forest and deep learning.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11056772/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae030\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae030","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Topical hidden genome: discovering latent cancer mutational topics using a Bayesian multilevel context-learning approach.
Inferring the cancer-type specificities of ultra-rare, genome-wide somatic mutations is an open problem. Traditional statistical methods cannot handle such data due to their ultra-high dimensionality and extreme data sparsity. To harness information in rare mutations, we have recently proposed a formal multilevel multilogistic "hidden genome" model. Through its hierarchical layers, the model condenses information in ultra-rare mutations through meta-features embodying mutation contexts to characterize cancer types. Consistent, scalable point estimation of the model can incorporate 10s of millions of variants across thousands of tumors and permit impressive prediction and attribution. However, principled statistical inference is infeasible due to the volume, correlation, and noninterpretability of mutation contexts. In this paper, we propose a novel framework that leverages topic models from computational linguistics to effectuate dimension reduction of mutation contexts producing interpretable, decorrelated meta-feature topics. We propose an efficient MCMC algorithm for implementation that permits rigorous full Bayesian inference at a scale that is orders of magnitude beyond the capability of existing out-of-the-box inferential high-dimensional multi-class regression methods and software. Applying our model to the Pan Cancer Analysis of Whole Genomes dataset reveals interesting biological insights including somatic mutational topics associated with UV exposure in skin cancer, aging in colorectal cancer, and strong influence of epigenome organization in liver cancer. Under cross-validation, our model demonstrates highly competitive predictive performance against blackbox methods of random forest and deep learning.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.