潜伏转化生长因子β结合蛋白1/转化生长因子β1复合物在ERK5靶向黑色素瘤时产生抗肿瘤作用。

IF 4.7 2区 医学 Q1 PATHOLOGY American Journal of Pathology Pub Date : 2024-08-01 DOI:10.1016/j.ajpath.2024.03.015
{"title":"潜伏转化生长因子β结合蛋白1/转化生长因子β1复合物在ERK5靶向黑色素瘤时产生抗肿瘤作用。","authors":"","doi":"10.1016/j.ajpath.2024.03.015","DOIUrl":null,"url":null,"abstract":"<div><p>Melanoma is the deadliest skin cancer, with a poor prognosis in advanced stages. While available treatments have improved survival, long-term benefits are still unsatisfactory. The mitogen-activated protein kinase extracellular signal-regulated kinase 5 (ERK5) promotes melanoma growth, and ERK5 inhibition determines cellular senescence and the senescence-associated secretory phenotype. Here, latent-transforming growth factor β-binding protein 1 (LTBP1) mRNA was found to be up-regulated in A375 and SK-Mel-5 BRAF V600E melanoma cells after ERK5 inhibition. In keeping with a key role of LTBP1 in regulating transforming growth factor β (TGF-β), TGF-β1 protein levels were increased in lysates and conditioned media of ERK5-knockdown (KD) cells, and were reduced upon LTBP1 KD. Both LTBP1 and TGF-β1 proteins were increased in melanoma xenografts in mice treated with the ERK5 inhibitor XMD8-92. Moreover, treatment with conditioned media from ERK5-KD melanoma cells reduced cell proliferation and invasiveness, and TGF-β1–neutralizing antibodies impaired these effects. <em>In silico</em> data sets revealed that higher expression levels of both LTBP1 and TGF-β1 mRNA were associated with better overall survival of melanoma patients. Increased LTBP1 or TGF-β1 expression played a beneficial role in patients treated with anti-PD1 immunotherapy, making a possible immunosuppressive role of LTBP1/TGF-β1 unlikely upon ERK5 inhibition. This study, therefore, identifies additional desirable effects of ERK5 targeting, providing evidence of an ERK5-dependent tumor-suppressive role of TGF-β in melanoma.</p></div>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":"194 8","pages":"Pages 1581-1591"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0002944024001676/pdfft?md5=092195a5478da64b4d45dbf5a1e52340&pid=1-s2.0-S0002944024001676-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Latent-Transforming Growth Factor β-Binding Protein 1/Transforming Growth Factor β1 Complex Drives Antitumoral Effects upon ERK5 Targeting in Melanoma\",\"authors\":\"\",\"doi\":\"10.1016/j.ajpath.2024.03.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Melanoma is the deadliest skin cancer, with a poor prognosis in advanced stages. While available treatments have improved survival, long-term benefits are still unsatisfactory. The mitogen-activated protein kinase extracellular signal-regulated kinase 5 (ERK5) promotes melanoma growth, and ERK5 inhibition determines cellular senescence and the senescence-associated secretory phenotype. Here, latent-transforming growth factor β-binding protein 1 (LTBP1) mRNA was found to be up-regulated in A375 and SK-Mel-5 BRAF V600E melanoma cells after ERK5 inhibition. In keeping with a key role of LTBP1 in regulating transforming growth factor β (TGF-β), TGF-β1 protein levels were increased in lysates and conditioned media of ERK5-knockdown (KD) cells, and were reduced upon LTBP1 KD. Both LTBP1 and TGF-β1 proteins were increased in melanoma xenografts in mice treated with the ERK5 inhibitor XMD8-92. Moreover, treatment with conditioned media from ERK5-KD melanoma cells reduced cell proliferation and invasiveness, and TGF-β1–neutralizing antibodies impaired these effects. <em>In silico</em> data sets revealed that higher expression levels of both LTBP1 and TGF-β1 mRNA were associated with better overall survival of melanoma patients. Increased LTBP1 or TGF-β1 expression played a beneficial role in patients treated with anti-PD1 immunotherapy, making a possible immunosuppressive role of LTBP1/TGF-β1 unlikely upon ERK5 inhibition. This study, therefore, identifies additional desirable effects of ERK5 targeting, providing evidence of an ERK5-dependent tumor-suppressive role of TGF-β in melanoma.</p></div>\",\"PeriodicalId\":7623,\"journal\":{\"name\":\"American Journal of Pathology\",\"volume\":\"194 8\",\"pages\":\"Pages 1581-1591\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0002944024001676/pdfft?md5=092195a5478da64b4d45dbf5a1e52340&pid=1-s2.0-S0002944024001676-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0002944024001676\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0002944024001676","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

黑色素瘤是最致命的皮肤癌,晚期患者预后很差。现有的治疗方法提高了生存率,但长期疗效仍不令人满意。有丝分裂原激活蛋白激酶ERK5促进黑色素瘤的生长,而ERK5抑制决定了细胞衰老和衰老相关的分泌表型。研究发现,ERK5抑制后,A375和SK-Mel-5 BRAFV600E黑色素瘤细胞中潜伏转化生长因子β结合蛋白1(LTBP1)mRNA上调。与LTBP1在调节转化生长因子β(TGF-β)中的关键作用相一致的是,ERK5敲除(KD)细胞的裂解物和条件培养基中TGF-β1蛋白水平升高,而LTBP1 KD后TGF-β1蛋白水平降低。用ERK5抑制剂XMD8-92处理的小鼠黑色素瘤异种移植物中,LTBP1和TGF-β1蛋白都有所增加。此外,用ERK5-KD黑色素瘤细胞的条件培养基处理可减少细胞增殖和侵袭性,而TGF-β1-中和抗体会削弱这些效应。硅学数据集显示,LTBP1和TGFB1 mRNA的表达水平越高,黑色素瘤患者的总生存率就越高,而且LTBP1或TGF-β1表达的增加证明对接受抗PD1免疫疗法的患者有益,这就使得LTBP1/TGF-β1在ERK5抑制下可能发挥的免疫抑制作用变得不太可能。因此,本研究发现了ERK5靶向的其他理想效应,为TGF-β在黑色素瘤中发挥依赖ERK5的肿瘤抑制作用提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Latent-Transforming Growth Factor β-Binding Protein 1/Transforming Growth Factor β1 Complex Drives Antitumoral Effects upon ERK5 Targeting in Melanoma

Melanoma is the deadliest skin cancer, with a poor prognosis in advanced stages. While available treatments have improved survival, long-term benefits are still unsatisfactory. The mitogen-activated protein kinase extracellular signal-regulated kinase 5 (ERK5) promotes melanoma growth, and ERK5 inhibition determines cellular senescence and the senescence-associated secretory phenotype. Here, latent-transforming growth factor β-binding protein 1 (LTBP1) mRNA was found to be up-regulated in A375 and SK-Mel-5 BRAF V600E melanoma cells after ERK5 inhibition. In keeping with a key role of LTBP1 in regulating transforming growth factor β (TGF-β), TGF-β1 protein levels were increased in lysates and conditioned media of ERK5-knockdown (KD) cells, and were reduced upon LTBP1 KD. Both LTBP1 and TGF-β1 proteins were increased in melanoma xenografts in mice treated with the ERK5 inhibitor XMD8-92. Moreover, treatment with conditioned media from ERK5-KD melanoma cells reduced cell proliferation and invasiveness, and TGF-β1–neutralizing antibodies impaired these effects. In silico data sets revealed that higher expression levels of both LTBP1 and TGF-β1 mRNA were associated with better overall survival of melanoma patients. Increased LTBP1 or TGF-β1 expression played a beneficial role in patients treated with anti-PD1 immunotherapy, making a possible immunosuppressive role of LTBP1/TGF-β1 unlikely upon ERK5 inhibition. This study, therefore, identifies additional desirable effects of ERK5 targeting, providing evidence of an ERK5-dependent tumor-suppressive role of TGF-β in melanoma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.40
自引率
0.00%
发文量
178
审稿时长
30 days
期刊介绍: The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.
期刊最新文献
Editorial Board Table of Contents A Core of Keratocan-Negative Cells Survives in Old Corneal Scars. CDR1as Deficiency Prevents Photoreceptor Degeneration by Regulating miR-7a-5p/α-syn/Parthanatos Pathway in Retinal Detachment. Evidence and Mechanism of Bile Acid-Mediated Gut-Brain Axis in Anxiety and Depression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1