Eric Hermand, Léo Lesaint, Laura Denis, Jean-Paul Richalet, François J Lhuissier
{"title":"在野外条件下评估严重高海拔疾病易感性的步骤测试。","authors":"Eric Hermand, Léo Lesaint, Laura Denis, Jean-Paul Richalet, François J Lhuissier","doi":"10.1089/ham.2023.0065","DOIUrl":null,"url":null,"abstract":"<p><p>Hermand, Eric, Léo Lesaint, Laura Denis, Jean-Paul Richalet, and François J. Lhuissier. A step test to evaluate the susceptibility to severe high-altitude illness in field conditions. <i>High Alt Med Biol.</i> 25:158-163, 2024.-A laboratory-based hypoxic exercise test, performed on a cycle ergometer, can be used to predict susceptibility to severe high-altitude illness (SHAI) through the calculation of a clinicophysiological SHAI score. Our objective was to design a field-condition test and compare its derived SHAI score and various physiological parameters, such as peripheral oxygen saturation (SpO<sub>2</sub>), and cardiac and ventilatory responses to hypoxia during exercise (HCRe and HVRe, respectively), to the laboratory test. A group of 43 healthy subjects (15 females and 28 males), with no prior experience at high altitude, performed a hypoxic cycle ergometer test (simulated altitude of 4,800 m) and step tests (20 cm high step) at 3,000, 4,000, and 4,800 m simulated altitudes. According to tested altitudes, differences were observed in O<sub>2</sub> desaturation, heart rate, and minute ventilation (<i>p</i> < 0.001), whereas the computed HCRe and HVRe were not different (<i>p</i> = 0.075 and <i>p</i> = 0.203, respectively). From the linear relationships between the step test and SHAI scores, we defined a risk zone, allowing us to evaluate the risk of developing SHAI and take adequate preventive measures in field conditions, from the calculated step test score for the given altitude. The predictive value of this new field test remains to be validated in real high-altitude conditions.</p>","PeriodicalId":12975,"journal":{"name":"High altitude medicine & biology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Step Test to Evaluate the Susceptibility to Severe High-Altitude Illness in Field Conditions.\",\"authors\":\"Eric Hermand, Léo Lesaint, Laura Denis, Jean-Paul Richalet, François J Lhuissier\",\"doi\":\"10.1089/ham.2023.0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hermand, Eric, Léo Lesaint, Laura Denis, Jean-Paul Richalet, and François J. Lhuissier. A step test to evaluate the susceptibility to severe high-altitude illness in field conditions. <i>High Alt Med Biol.</i> 25:158-163, 2024.-A laboratory-based hypoxic exercise test, performed on a cycle ergometer, can be used to predict susceptibility to severe high-altitude illness (SHAI) through the calculation of a clinicophysiological SHAI score. Our objective was to design a field-condition test and compare its derived SHAI score and various physiological parameters, such as peripheral oxygen saturation (SpO<sub>2</sub>), and cardiac and ventilatory responses to hypoxia during exercise (HCRe and HVRe, respectively), to the laboratory test. A group of 43 healthy subjects (15 females and 28 males), with no prior experience at high altitude, performed a hypoxic cycle ergometer test (simulated altitude of 4,800 m) and step tests (20 cm high step) at 3,000, 4,000, and 4,800 m simulated altitudes. According to tested altitudes, differences were observed in O<sub>2</sub> desaturation, heart rate, and minute ventilation (<i>p</i> < 0.001), whereas the computed HCRe and HVRe were not different (<i>p</i> = 0.075 and <i>p</i> = 0.203, respectively). From the linear relationships between the step test and SHAI scores, we defined a risk zone, allowing us to evaluate the risk of developing SHAI and take adequate preventive measures in field conditions, from the calculated step test score for the given altitude. The predictive value of this new field test remains to be validated in real high-altitude conditions.</p>\",\"PeriodicalId\":12975,\"journal\":{\"name\":\"High altitude medicine & biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High altitude medicine & biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ham.2023.0065\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High altitude medicine & biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ham.2023.0065","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
A Step Test to Evaluate the Susceptibility to Severe High-Altitude Illness in Field Conditions.
Hermand, Eric, Léo Lesaint, Laura Denis, Jean-Paul Richalet, and François J. Lhuissier. A step test to evaluate the susceptibility to severe high-altitude illness in field conditions. High Alt Med Biol. 25:158-163, 2024.-A laboratory-based hypoxic exercise test, performed on a cycle ergometer, can be used to predict susceptibility to severe high-altitude illness (SHAI) through the calculation of a clinicophysiological SHAI score. Our objective was to design a field-condition test and compare its derived SHAI score and various physiological parameters, such as peripheral oxygen saturation (SpO2), and cardiac and ventilatory responses to hypoxia during exercise (HCRe and HVRe, respectively), to the laboratory test. A group of 43 healthy subjects (15 females and 28 males), with no prior experience at high altitude, performed a hypoxic cycle ergometer test (simulated altitude of 4,800 m) and step tests (20 cm high step) at 3,000, 4,000, and 4,800 m simulated altitudes. According to tested altitudes, differences were observed in O2 desaturation, heart rate, and minute ventilation (p < 0.001), whereas the computed HCRe and HVRe were not different (p = 0.075 and p = 0.203, respectively). From the linear relationships between the step test and SHAI scores, we defined a risk zone, allowing us to evaluate the risk of developing SHAI and take adequate preventive measures in field conditions, from the calculated step test score for the given altitude. The predictive value of this new field test remains to be validated in real high-altitude conditions.
期刊介绍:
High Altitude Medicine & Biology is the only peer-reviewed journal covering the medical and biological issues that impact human life at high altitudes. The Journal delivers critical findings on the impact of high altitude on lung and heart disease, appetite and weight loss, pulmonary and cerebral edema, hypertension, dehydration, infertility, and other diseases. It covers the full spectrum of high altitude life sciences from pathology to human and animal ecology.