在非酒精性脂肪肝(NAFLD)肝纤维化的无创诊断中,利用集合机器学习对临床风险预测算法进行标杆分析。

IF 12.9 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Hepatology Pub Date : 2024-11-01 Epub Date: 2024-04-30 DOI:10.1097/HEP.0000000000000908
Vivek Charu, Jane W Liang, Ajitha Mannalithara, Allison Kwong, Lu Tian, W Ray Kim
{"title":"在非酒精性脂肪肝(NAFLD)肝纤维化的无创诊断中,利用集合机器学习对临床风险预测算法进行标杆分析。","authors":"Vivek Charu, Jane W Liang, Ajitha Mannalithara, Allison Kwong, Lu Tian, W Ray Kim","doi":"10.1097/HEP.0000000000000908","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Ensemble machine-learning methods, like the superlearner, combine multiple models into a single one to enhance predictive accuracy. Here we explore the potential of the superlearner as a benchmarking tool for clinical risk prediction, illustrating the approach to identifying significant liver fibrosis among patients with NAFLD.</p><p><strong>Approach and results: </strong>We used 23 demographic/clinical variables to train superlearner(s) on data from the NASH-clinical research network observational study (n = 648) and validated models with data from the FLINT trial (n = 270) and National Health and Nutrition Examination Survey (NHANES) participants with NAFLD (n = 1244). Comparing the superlearner's performance to existing models (Fibrosis-4 [FIB-4], NAFLD fibrosis score, Forns, AST to Platelet Ratio Index [APRI], BARD, and Steatosis-Associated Fibrosis Estimator [SAFE]), it exhibited strong discriminative ability in the FLINT and NHANES validation sets, with AUCs of 0.79 (95% CI: 0.73-0.84) and 0.74 (95% CI: 0.68-0.79) respectively.</p><p><strong>Conclusions: </strong>Notably, the SAFE score performed similarly to the superlearner, both of which outperformed FIB-4, APRI, Forns, and BARD scores in the validation data sets. Surprisingly, the superlearner derived from 12 base models matched the performance of one with 90 base models. Overall, the superlearner, being the \"best-in-class\" machine-learning predictor, excelled in detecting fibrotic NASH, and this approach can be used to benchmark the performance of conventional clinical risk prediction models.</p>","PeriodicalId":177,"journal":{"name":"Hepatology","volume":" ","pages":"1184-1195"},"PeriodicalIF":12.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking clinical risk prediction algorithms with ensemble machine learning for the noninvasive diagnosis of liver fibrosis in NAFLD.\",\"authors\":\"Vivek Charu, Jane W Liang, Ajitha Mannalithara, Allison Kwong, Lu Tian, W Ray Kim\",\"doi\":\"10.1097/HEP.0000000000000908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Ensemble machine-learning methods, like the superlearner, combine multiple models into a single one to enhance predictive accuracy. Here we explore the potential of the superlearner as a benchmarking tool for clinical risk prediction, illustrating the approach to identifying significant liver fibrosis among patients with NAFLD.</p><p><strong>Approach and results: </strong>We used 23 demographic/clinical variables to train superlearner(s) on data from the NASH-clinical research network observational study (n = 648) and validated models with data from the FLINT trial (n = 270) and National Health and Nutrition Examination Survey (NHANES) participants with NAFLD (n = 1244). Comparing the superlearner's performance to existing models (Fibrosis-4 [FIB-4], NAFLD fibrosis score, Forns, AST to Platelet Ratio Index [APRI], BARD, and Steatosis-Associated Fibrosis Estimator [SAFE]), it exhibited strong discriminative ability in the FLINT and NHANES validation sets, with AUCs of 0.79 (95% CI: 0.73-0.84) and 0.74 (95% CI: 0.68-0.79) respectively.</p><p><strong>Conclusions: </strong>Notably, the SAFE score performed similarly to the superlearner, both of which outperformed FIB-4, APRI, Forns, and BARD scores in the validation data sets. Surprisingly, the superlearner derived from 12 base models matched the performance of one with 90 base models. Overall, the superlearner, being the \\\"best-in-class\\\" machine-learning predictor, excelled in detecting fibrotic NASH, and this approach can be used to benchmark the performance of conventional clinical risk prediction models.</p>\",\"PeriodicalId\":177,\"journal\":{\"name\":\"Hepatology\",\"volume\":\" \",\"pages\":\"1184-1195\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hepatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/HEP.0000000000000908\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HEP.0000000000000908","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

集合机器学习方法(如超级学习器)将多个模型合并为一个模型,以提高预测准确性。在此,我们探讨了超级学习器作为临床风险预测基准工具的潜力,并说明了该方法在识别非酒精性脂肪肝(NAFLD)患者中显著肝纤维化的作用。我们使用 23 个人口统计学/临床变量对 NASH-CRN 观察性研究的数据(样本数=648)训练超级学习器,并使用 FLINT 试验的数据(样本数=270)和 NHANES 非酒精性脂肪肝参与者的数据(样本数=1244)验证模型。将超级学习器的性能与现有模型(FIB-4、NFS、Forns、APRI、BARD 和 SAFE)进行比较后发现,超级学习器在 FLINT 和 NHANES 验证集中表现出很强的判别能力,AUC 分别为 0.79(95% CI:0.73-0.84)和 0.74(95% CI:0.68-0.79)。值得注意的是,SAFE 评分的表现与超级学习器相似,在验证数据集中,两者的表现均优于 FIB-4、APRI、Forns 和 BARD 评分。令人惊讶的是,由 12 个基础模型推导出的超级学习器的表现与由 90 个基础模型推导出的超级学习器不相上下。总之,超级学习器作为 "同类最佳 "的 ML 预测器,在检测纤维化 NASH 方面表现出色,这种方法可用于衡量传统临床风险预测模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Benchmarking clinical risk prediction algorithms with ensemble machine learning for the noninvasive diagnosis of liver fibrosis in NAFLD.

Background and aims: Ensemble machine-learning methods, like the superlearner, combine multiple models into a single one to enhance predictive accuracy. Here we explore the potential of the superlearner as a benchmarking tool for clinical risk prediction, illustrating the approach to identifying significant liver fibrosis among patients with NAFLD.

Approach and results: We used 23 demographic/clinical variables to train superlearner(s) on data from the NASH-clinical research network observational study (n = 648) and validated models with data from the FLINT trial (n = 270) and National Health and Nutrition Examination Survey (NHANES) participants with NAFLD (n = 1244). Comparing the superlearner's performance to existing models (Fibrosis-4 [FIB-4], NAFLD fibrosis score, Forns, AST to Platelet Ratio Index [APRI], BARD, and Steatosis-Associated Fibrosis Estimator [SAFE]), it exhibited strong discriminative ability in the FLINT and NHANES validation sets, with AUCs of 0.79 (95% CI: 0.73-0.84) and 0.74 (95% CI: 0.68-0.79) respectively.

Conclusions: Notably, the SAFE score performed similarly to the superlearner, both of which outperformed FIB-4, APRI, Forns, and BARD scores in the validation data sets. Surprisingly, the superlearner derived from 12 base models matched the performance of one with 90 base models. Overall, the superlearner, being the "best-in-class" machine-learning predictor, excelled in detecting fibrotic NASH, and this approach can be used to benchmark the performance of conventional clinical risk prediction models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hepatology
Hepatology 医学-胃肠肝病学
CiteScore
27.50
自引率
3.70%
发文量
609
审稿时长
1 months
期刊介绍: HEPATOLOGY is recognized as the leading publication in the field of liver disease. It features original, peer-reviewed articles covering various aspects of liver structure, function, and disease. The journal's distinguished Editorial Board carefully selects the best articles each month, focusing on topics including immunology, chronic hepatitis, viral hepatitis, cirrhosis, genetic and metabolic liver diseases, liver cancer, and drug metabolism.
期刊最新文献
Medical treatment of primary sclerosing cholangitis: What have we learned and where are we going? Reply: Refining the role of HAF in hepatocellular carcinoma Letter to the Editor: Refining the role of HAF in hepatocellular carcinoma Plasma FSTL-1 as a non-invasive diagnostic biomarker for patients with advanced liver fibrosis Outcome and management of patients with hepatocellular carcinoma who achieved complete response to immunotherapy-based systemic therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1