[人工智能在胰腺囊性病变成像中的应用]。

Wen-Yi Deng, Fei-Yang Xie, Hua-Dan Xue
{"title":"[人工智能在胰腺囊性病变成像中的应用]。","authors":"Wen-Yi Deng, Fei-Yang Xie, Hua-Dan Xue","doi":"10.3881/j.issn.1000-503X.15633","DOIUrl":null,"url":null,"abstract":"<p><p>As the detection rate of pancreatic cystic lesions(PCL)increases,artificial intelligence(AI)has made breakthroughs in the imaging workflow of PCL,including image post-processing,lesion detection,segmentation,diagnosis and differential diagnosis.AI-based image post-processing can optimize the quality of medical images and AI-assisted models for lesion detection,segmentation,diagnosis and differential diagnosis significantly enhance the work efficiency of radiologists.This article reviews the application progress of AI in PCL imaging and provides prospects for future research directions.</p>","PeriodicalId":6919,"journal":{"name":"中国医学科学院学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Applications of Artificial Intelligence in Pancreatic Cystic Lesion Imaging].\",\"authors\":\"Wen-Yi Deng, Fei-Yang Xie, Hua-Dan Xue\",\"doi\":\"10.3881/j.issn.1000-503X.15633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the detection rate of pancreatic cystic lesions(PCL)increases,artificial intelligence(AI)has made breakthroughs in the imaging workflow of PCL,including image post-processing,lesion detection,segmentation,diagnosis and differential diagnosis.AI-based image post-processing can optimize the quality of medical images and AI-assisted models for lesion detection,segmentation,diagnosis and differential diagnosis significantly enhance the work efficiency of radiologists.This article reviews the application progress of AI in PCL imaging and provides prospects for future research directions.</p>\",\"PeriodicalId\":6919,\"journal\":{\"name\":\"中国医学科学院学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国医学科学院学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.3881/j.issn.1000-503X.15633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国医学科学院学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3881/j.issn.1000-503X.15633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

随着胰腺囊性病变(PCL)检出率的提高,人工智能(AI)在PCL影像学工作流程中取得了突破性进展,包括图像后处理、病灶检测、分割、诊断和鉴别诊断等。基于人工智能的图像后处理可以优化医学影像质量,人工智能辅助的病灶检测、分割、诊断和鉴别诊断模型显著提高了放射科医生的工作效率。本文回顾了人工智能在PCL影像学中的应用进展,并对未来的研究方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Applications of Artificial Intelligence in Pancreatic Cystic Lesion Imaging].

As the detection rate of pancreatic cystic lesions(PCL)increases,artificial intelligence(AI)has made breakthroughs in the imaging workflow of PCL,including image post-processing,lesion detection,segmentation,diagnosis and differential diagnosis.AI-based image post-processing can optimize the quality of medical images and AI-assisted models for lesion detection,segmentation,diagnosis and differential diagnosis significantly enhance the work efficiency of radiologists.This article reviews the application progress of AI in PCL imaging and provides prospects for future research directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国医学科学院学报
中国医学科学院学报 Medicine-Medicine (all)
CiteScore
0.60
自引率
0.00%
发文量
6813
期刊介绍: Acta Academiae Medicinae Sinicae was founded in February 1979. It is a comprehensive medical academic journal published in China and abroad, supervised by the Ministry of Health of the People's Republic of China and sponsored by the Chinese Academy of Medical Sciences and Peking Union Medical College. The journal mainly reports the latest research results, work progress and dynamics in the fields of basic medicine, clinical medicine, pharmacy, preventive medicine, biomedicine, medical teaching and research, aiming to promote the exchange of medical information and improve the academic level of medicine. At present, the journal has been included in 10 famous foreign retrieval systems and their databases [Medline (PubMed online version), Elsevier, EMBASE, CA, WPRIM, ExtraMED, IC, JST, UPD and EBSCO-ASP]; and has been included in important domestic retrieval systems and databases [China Science Citation Database (Documentation and Information Center of the Chinese Academy of Sciences), China Core Journals Overview (Peking University Library), China Science and Technology Paper Statistical Source Database (China Science and Technology Core Journals) (China Institute of Scientific and Technological Information), China Science and Technology Journal Paper and Citation Database (China Institute of Scientific and Technological Information)].
期刊最新文献
Advances in Research on Application of Quantitative CT in Clinical Diagnosis and Treatment of Osteoporosis. Research Progress of Drugs in Prevention and Treatment of Nephrolithiasis. Thermal Ablation of Pulmonary Nodules by Electromagnetic Navigation Bronchoscopy Combined With Real-Time CT-Based 3D Fusion Navigation:Report of One Case. [Risk Factors for Returning of Pediatric Liver Transplant Recipients to the Intensive Care Unit]. [Development and Reliability and Validity Analysis of the Knowledge,Attitude,and Practice Evaluation Scale for Teachers' Early Childhood Sex Education].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1