Emma Clarke-Deelder, Christian Suharlim, Susmita Chatterjee, Allison Portnoy, Logan Brenzel, Arindam Ray, Jessica L Cohen, Nicolas A Menzies, Stephen C Resch
{"title":"印度通过 Indradhanush 强化使命扩大常规免疫覆盖面的健康影响和成本效益。","authors":"Emma Clarke-Deelder, Christian Suharlim, Susmita Chatterjee, Allison Portnoy, Logan Brenzel, Arindam Ray, Jessica L Cohen, Nicolas A Menzies, Stephen C Resch","doi":"10.1093/heapol/czae024","DOIUrl":null,"url":null,"abstract":"<p><p>Many children do not receive a full schedule of childhood vaccines, yet there is limited evidence on the cost-effectiveness of strategies for improving vaccination coverage. Evidence is even scarcer on the cost-effectiveness of strategies for reaching 'zero-dose children', who have not received any routine vaccines. We evaluated the cost-effectiveness of periodic intensification of routine immunization (PIRI), a widely applied strategy for increasing vaccination coverage. We focused on Intensified Mission Indradhanush (IMI), a large-scale PIRI intervention implemented in India in 2017-2018. In 40 sampled districts, we measured the incremental economic cost of IMI using primary data, and used controlled interrupted time-series regression to estimate the incremental vaccination doses delivered. We estimated deaths and disability-adjusted life years (DALYs) averted using the Lives Saved Tool and reported cost-effectiveness from immunization programme and societal perspectives. We found that, in sampled districts, IMI had an estimated incremental cost of 2021US$13.7 (95% uncertainty interval: 10.6 to 17.4) million from an immunization programme perspective and increased vaccine delivery by an estimated 2.2 (-0.5 to 4.8) million doses over a 12-month period, averting an estimated 1413 (-350 to 3129) deaths. The incremental cost from a programme perspective was $6.21 per dose ($2.80 to dominated), $82.99 per zero-dose child reached ($39.85 to dominated), $327.63 ($147.65 to dominated) per DALY averted, $360.72 ($162.56 to dominated) per life-year saved and $9701.35 ($4372.01 to dominated) per under-5 death averted. At a cost-effectiveness threshold of 1× per-capita GDP per DALY averted, IMI was estimated to be cost-effective with 90% probability. This evidence suggests IMI was both impactful and cost-effective for improving vaccination coverage, though there is a high degree of uncertainty in the results. As vaccination programmes expand coverage, unit costs may increase due to the higher costs of reaching currently unvaccinated children.</p>","PeriodicalId":12926,"journal":{"name":"Health policy and planning","volume":" ","pages":"583-592"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145919/pdf/","citationCount":"0","resultStr":"{\"title\":\"Health impact and cost-effectiveness of expanding routine immunization coverage in India through Intensified Mission Indradhanush.\",\"authors\":\"Emma Clarke-Deelder, Christian Suharlim, Susmita Chatterjee, Allison Portnoy, Logan Brenzel, Arindam Ray, Jessica L Cohen, Nicolas A Menzies, Stephen C Resch\",\"doi\":\"10.1093/heapol/czae024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many children do not receive a full schedule of childhood vaccines, yet there is limited evidence on the cost-effectiveness of strategies for improving vaccination coverage. Evidence is even scarcer on the cost-effectiveness of strategies for reaching 'zero-dose children', who have not received any routine vaccines. We evaluated the cost-effectiveness of periodic intensification of routine immunization (PIRI), a widely applied strategy for increasing vaccination coverage. We focused on Intensified Mission Indradhanush (IMI), a large-scale PIRI intervention implemented in India in 2017-2018. In 40 sampled districts, we measured the incremental economic cost of IMI using primary data, and used controlled interrupted time-series regression to estimate the incremental vaccination doses delivered. We estimated deaths and disability-adjusted life years (DALYs) averted using the Lives Saved Tool and reported cost-effectiveness from immunization programme and societal perspectives. We found that, in sampled districts, IMI had an estimated incremental cost of 2021US$13.7 (95% uncertainty interval: 10.6 to 17.4) million from an immunization programme perspective and increased vaccine delivery by an estimated 2.2 (-0.5 to 4.8) million doses over a 12-month period, averting an estimated 1413 (-350 to 3129) deaths. The incremental cost from a programme perspective was $6.21 per dose ($2.80 to dominated), $82.99 per zero-dose child reached ($39.85 to dominated), $327.63 ($147.65 to dominated) per DALY averted, $360.72 ($162.56 to dominated) per life-year saved and $9701.35 ($4372.01 to dominated) per under-5 death averted. At a cost-effectiveness threshold of 1× per-capita GDP per DALY averted, IMI was estimated to be cost-effective with 90% probability. This evidence suggests IMI was both impactful and cost-effective for improving vaccination coverage, though there is a high degree of uncertainty in the results. As vaccination programmes expand coverage, unit costs may increase due to the higher costs of reaching currently unvaccinated children.</p>\",\"PeriodicalId\":12926,\"journal\":{\"name\":\"Health policy and planning\",\"volume\":\" \",\"pages\":\"583-592\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145919/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health policy and planning\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/heapol/czae024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health policy and planning","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/heapol/czae024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Health impact and cost-effectiveness of expanding routine immunization coverage in India through Intensified Mission Indradhanush.
Many children do not receive a full schedule of childhood vaccines, yet there is limited evidence on the cost-effectiveness of strategies for improving vaccination coverage. Evidence is even scarcer on the cost-effectiveness of strategies for reaching 'zero-dose children', who have not received any routine vaccines. We evaluated the cost-effectiveness of periodic intensification of routine immunization (PIRI), a widely applied strategy for increasing vaccination coverage. We focused on Intensified Mission Indradhanush (IMI), a large-scale PIRI intervention implemented in India in 2017-2018. In 40 sampled districts, we measured the incremental economic cost of IMI using primary data, and used controlled interrupted time-series regression to estimate the incremental vaccination doses delivered. We estimated deaths and disability-adjusted life years (DALYs) averted using the Lives Saved Tool and reported cost-effectiveness from immunization programme and societal perspectives. We found that, in sampled districts, IMI had an estimated incremental cost of 2021US$13.7 (95% uncertainty interval: 10.6 to 17.4) million from an immunization programme perspective and increased vaccine delivery by an estimated 2.2 (-0.5 to 4.8) million doses over a 12-month period, averting an estimated 1413 (-350 to 3129) deaths. The incremental cost from a programme perspective was $6.21 per dose ($2.80 to dominated), $82.99 per zero-dose child reached ($39.85 to dominated), $327.63 ($147.65 to dominated) per DALY averted, $360.72 ($162.56 to dominated) per life-year saved and $9701.35 ($4372.01 to dominated) per under-5 death averted. At a cost-effectiveness threshold of 1× per-capita GDP per DALY averted, IMI was estimated to be cost-effective with 90% probability. This evidence suggests IMI was both impactful and cost-effective for improving vaccination coverage, though there is a high degree of uncertainty in the results. As vaccination programmes expand coverage, unit costs may increase due to the higher costs of reaching currently unvaccinated children.
期刊介绍:
Health Policy and Planning publishes health policy and systems research focusing on low- and middle-income countries.
Our journal provides an international forum for publishing original and high-quality research that addresses questions pertinent to policy-makers, public health researchers and practitioners. Health Policy and Planning is published 10 times a year.