外泌体作为生物毒素毒性的信号传递介质:全面综述。

IF 5.3 2区 医学 Q2 CELL BIOLOGY Cell Biology and Toxicology Pub Date : 2024-05-02 DOI:10.1007/s10565-024-09867-4
Tongxiao Xu, Bingxin Huangfu, Xiaoyun He, Kunlun Huang
{"title":"外泌体作为生物毒素毒性的信号传递介质:全面综述。","authors":"Tongxiao Xu, Bingxin Huangfu, Xiaoyun He, Kunlun Huang","doi":"10.1007/s10565-024-09867-4","DOIUrl":null,"url":null,"abstract":"<p><p>Small membranes known as exosomes surround them and are released by several cell types both in vitro and in vivo. These membranes are packed with a variety of biomolecules, including proteins, lipids, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and non-coding RNA (ncRNA). As a source of biological nanomaterials, exosomes play a role in information and substance transmission between cells and have been identified as a general method of facilitating communication during interactions between the body, target organs, and toxins.. In order to understand the changes and mechanism of the composition and level of exosomes after biotoxin infection, this review focuses on current findings on the exosomes and highlights their novel uses in the toxicity mechanism. Exosomes are mainly used as a delivery carrier or mediated by receptors, and play an immune role after the toxin enters the body. This review expounds on the importance of exosomes in the toxicological mechanism of biotoxins and provides new insights for further diagnosis of toxic biomarkers, detoxification, and treatment development.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"27"},"PeriodicalIF":5.3000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062979/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exosomes as mediators of signal transmitters in biotoxins toxicity: a comprehensive review.\",\"authors\":\"Tongxiao Xu, Bingxin Huangfu, Xiaoyun He, Kunlun Huang\",\"doi\":\"10.1007/s10565-024-09867-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small membranes known as exosomes surround them and are released by several cell types both in vitro and in vivo. These membranes are packed with a variety of biomolecules, including proteins, lipids, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and non-coding RNA (ncRNA). As a source of biological nanomaterials, exosomes play a role in information and substance transmission between cells and have been identified as a general method of facilitating communication during interactions between the body, target organs, and toxins.. In order to understand the changes and mechanism of the composition and level of exosomes after biotoxin infection, this review focuses on current findings on the exosomes and highlights their novel uses in the toxicity mechanism. Exosomes are mainly used as a delivery carrier or mediated by receptors, and play an immune role after the toxin enters the body. This review expounds on the importance of exosomes in the toxicological mechanism of biotoxins and provides new insights for further diagnosis of toxic biomarkers, detoxification, and treatment development.</p>\",\"PeriodicalId\":9672,\"journal\":{\"name\":\"Cell Biology and Toxicology\",\"volume\":\"40 1\",\"pages\":\"27\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062979/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology and Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10565-024-09867-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09867-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

体外和体内的多种细胞都会释放出被称为 "外泌体 "的小膜。这些膜中含有各种生物大分子,包括蛋白质、脂质、脱氧核糖核酸(DNA)、核糖核酸(RNA)和非编码 RNA(ncRNA)。作为生物纳米材料的一种来源,外泌体在细胞间的信息和物质传输中发挥作用,并已被确定为促进机体、目标器官和毒素之间相互作用过程中交流的一种通用方法。为了了解生物毒素感染后外泌体成分和水平的变化和机制,本综述重点介绍了目前对外泌体的研究结果,并强调了外泌体在毒性机制中的新用途。外泌体主要作为递送载体或受体介导,在毒素进入人体后发挥免疫作用。这篇综述阐述了外泌体在生物毒素毒性机制中的重要性,并为进一步诊断毒性生物标志物、解毒和开发治疗方法提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exosomes as mediators of signal transmitters in biotoxins toxicity: a comprehensive review.

Small membranes known as exosomes surround them and are released by several cell types both in vitro and in vivo. These membranes are packed with a variety of biomolecules, including proteins, lipids, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and non-coding RNA (ncRNA). As a source of biological nanomaterials, exosomes play a role in information and substance transmission between cells and have been identified as a general method of facilitating communication during interactions between the body, target organs, and toxins.. In order to understand the changes and mechanism of the composition and level of exosomes after biotoxin infection, this review focuses on current findings on the exosomes and highlights their novel uses in the toxicity mechanism. Exosomes are mainly used as a delivery carrier or mediated by receptors, and play an immune role after the toxin enters the body. This review expounds on the importance of exosomes in the toxicological mechanism of biotoxins and provides new insights for further diagnosis of toxic biomarkers, detoxification, and treatment development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biology and Toxicology
Cell Biology and Toxicology 生物-毒理学
CiteScore
9.90
自引率
4.90%
发文量
101
审稿时长
>12 weeks
期刊介绍: Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.
期刊最新文献
ASPP2 deficiency attenuates lipid accumulation through the PPARγ pathway in alcoholic liver injury. Advancing gastric cancer treatment: nanotechnology innovations and future prospects. The pivotal role of ZNF384: driving the malignant behavior of serous ovarian cancer cells via the LIN28B/UBD axis. ALKBH5 insufficiency protects against ferroptosis-driven cisplatin-induced renal cytotoxicity. Correction to: Activation of lipophagy ameliorates cadmium‑induced neural tube defects via reducing low density lipoprotein cholesterol levels in mouse placentas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1