通过研究 TSC2 条件性基因敲除小鼠模型,确定 mTORC1 在甲状腺细胞中的体内作用。

IF 5.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Thyroid Pub Date : 2024-08-01 Epub Date: 2024-05-08 DOI:10.1089/thy.2024.0053
Camila Ludke Rossetti, Bruna Lourençoni Alves, Flavia Leticia Martins Peçanha, Aime T Franco, Vania Nosé, Everardo Magalhaes Carneiro, John Lew, Ernesto Bernal-Mizrachi, Joao Pedro Werneck-de-Castro
{"title":"通过研究 TSC2 条件性基因敲除小鼠模型,确定 mTORC1 在甲状腺细胞中的体内作用。","authors":"Camila Ludke Rossetti, Bruna Lourençoni Alves, Flavia Leticia Martins Peçanha, Aime T Franco, Vania Nosé, Everardo Magalhaes Carneiro, John Lew, Ernesto Bernal-Mizrachi, Joao Pedro Werneck-de-Castro","doi":"10.1089/thy.2024.0053","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> The thyroid gland is susceptible to abnormal epithelial cell growth, often resulting in thyroid dysfunction. The serine-threonine protein kinase mechanistic target of rapamycin (mTOR) regulates cellular metabolism, proliferation, and growth through two different protein complexes, mTORC1 and mTORC2. The PI3K-Akt-mTORC1 pathway's overactivity is well associated with heightened aggressiveness in thyroid cancer, but recent studies indicate the involvement of mTORC2 as well. <b><i>Methods:</i></b> To elucidate mTORC1's role in thyrocytes, we developed a novel mouse model with mTORC1 gain of function in thyrocytes by deleting tuberous sclerosis complex 2 (TSC2), an intracellular inhibitor of mTORC1. <b><i>Results:</i></b> The resulting <i>TPO-TSC2<sup>KO</sup></i> mice exhibited a 70-80% reduction in TSC2 levels, leading to a sixfold increase in mTORC1 activity. Thyroid glands of both male and female <i>TPO-TSC2<sup>KO</sup></i> mice displayed rapid enlargement and continued growth throughout life, with larger follicles and increased colloid and epithelium areas. We observed elevated thyrocyte proliferation as indicated by Ki67 staining and elevated cyclin D3 expression in the <i>TPO-TSC2<sup>KO</sup></i> mice. mTORC1 activation resulted in a progressive downregulation of key genes involved in thyroid hormone biosynthesis, including <i>thyroglobulin (Tg)</i>, <i>thyroid peroxidase (Tpo)</i>, and <i>sodium-iodide symporter</i> (<i>Nis</i>), while <i>Tff1</i>, <i>Pax8</i>, and <i>Mct8</i> mRNA levels remained unaffected. NIS protein expression was also diminished in <i>TPO-TSC2<sup>KO</sup></i> mice. Treatment with the mTORC1 inhibitor rapamycin prevented thyroid mass expansion and restored the gene expression alterations in <i>TPO-TSC2<sup>KO</sup></i> mice. Although total thyroxine (T4), total triiodothyronine (T3), and TSH plasma levels were normal at 2 months of age, a slight decrease in T4 and an increase in TSH levels were observed at 6 and 12 months of age while T3 remained similar in <i>TPO-TSC2<sup>KO</sup></i> compared with littermate control mice. <b><i>Conclusions:</i></b> Our thyrocyte-specific mouse model reveals that mTORC1 activation inhibits thyroid hormone (TH) biosynthesis, suppresses thyrocyte gene expression, and promotes growth and proliferation.</p>","PeriodicalId":23016,"journal":{"name":"Thyroid","volume":" ","pages":"1047-1057"},"PeriodicalIF":5.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defining the <i>In Vivo</i> Role of mTORC1 in Thyrocytes by Studying the TSC2 Conditional Knockout Mouse Model.\",\"authors\":\"Camila Ludke Rossetti, Bruna Lourençoni Alves, Flavia Leticia Martins Peçanha, Aime T Franco, Vania Nosé, Everardo Magalhaes Carneiro, John Lew, Ernesto Bernal-Mizrachi, Joao Pedro Werneck-de-Castro\",\"doi\":\"10.1089/thy.2024.0053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> The thyroid gland is susceptible to abnormal epithelial cell growth, often resulting in thyroid dysfunction. The serine-threonine protein kinase mechanistic target of rapamycin (mTOR) regulates cellular metabolism, proliferation, and growth through two different protein complexes, mTORC1 and mTORC2. The PI3K-Akt-mTORC1 pathway's overactivity is well associated with heightened aggressiveness in thyroid cancer, but recent studies indicate the involvement of mTORC2 as well. <b><i>Methods:</i></b> To elucidate mTORC1's role in thyrocytes, we developed a novel mouse model with mTORC1 gain of function in thyrocytes by deleting tuberous sclerosis complex 2 (TSC2), an intracellular inhibitor of mTORC1. <b><i>Results:</i></b> The resulting <i>TPO-TSC2<sup>KO</sup></i> mice exhibited a 70-80% reduction in TSC2 levels, leading to a sixfold increase in mTORC1 activity. Thyroid glands of both male and female <i>TPO-TSC2<sup>KO</sup></i> mice displayed rapid enlargement and continued growth throughout life, with larger follicles and increased colloid and epithelium areas. We observed elevated thyrocyte proliferation as indicated by Ki67 staining and elevated cyclin D3 expression in the <i>TPO-TSC2<sup>KO</sup></i> mice. mTORC1 activation resulted in a progressive downregulation of key genes involved in thyroid hormone biosynthesis, including <i>thyroglobulin (Tg)</i>, <i>thyroid peroxidase (Tpo)</i>, and <i>sodium-iodide symporter</i> (<i>Nis</i>), while <i>Tff1</i>, <i>Pax8</i>, and <i>Mct8</i> mRNA levels remained unaffected. NIS protein expression was also diminished in <i>TPO-TSC2<sup>KO</sup></i> mice. Treatment with the mTORC1 inhibitor rapamycin prevented thyroid mass expansion and restored the gene expression alterations in <i>TPO-TSC2<sup>KO</sup></i> mice. Although total thyroxine (T4), total triiodothyronine (T3), and TSH plasma levels were normal at 2 months of age, a slight decrease in T4 and an increase in TSH levels were observed at 6 and 12 months of age while T3 remained similar in <i>TPO-TSC2<sup>KO</sup></i> compared with littermate control mice. <b><i>Conclusions:</i></b> Our thyrocyte-specific mouse model reveals that mTORC1 activation inhibits thyroid hormone (TH) biosynthesis, suppresses thyrocyte gene expression, and promotes growth and proliferation.</p>\",\"PeriodicalId\":23016,\"journal\":{\"name\":\"Thyroid\",\"volume\":\" \",\"pages\":\"1047-1057\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thyroid\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/thy.2024.0053\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thyroid","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/thy.2024.0053","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

背景:甲状腺上皮细胞易发生异常生长,通常会导致甲状腺功能障碍。丝氨酸-苏氨酸蛋白激酶雷帕霉素机制靶点(mTOR)通过两种不同的蛋白复合物--mTORC1和mTORC2--调节细胞的新陈代谢、增殖和生长。PI3K-Akt-mTORC1通路的过度活跃与甲状腺癌的侵袭性增高密切相关,但最近的研究表明,mTORC2也参与其中:为了阐明mTORC1在甲状腺细胞中的作用,我们通过删除mTORC1的细胞内抑制剂--结节性硬化症复合物2(TSC2),建立了一个甲状腺细胞中mTORC1功能增益的新型小鼠模型:结果:TPO-TSC2KO小鼠的TSC2水平降低了70-80%,导致mTORC1活性增加了6倍。雄性和雌性TPO-TSC2KO小鼠的甲状腺迅速增大,并在整个生命周期中持续增长,滤泡增大,胶质和上皮细胞面积增加。我们观察到 TPO-TSC2KO 小鼠 Ki67 染色显示甲状腺细胞增殖加快,细胞周期蛋白 D3 表达升高。mTORC1 激活导致参与甲状腺激素生物合成的关键基因逐渐下调,包括甲状腺球蛋白(Tg)、甲状腺过氧化物酶(Tpo)和钠碘合体(Nis),而 Tff1、Pax8 和 Mct8 mRNA 水平不受影响。TPO-TSC2KO小鼠的NIS蛋白表达也有所减少。用mTORC1抑制剂雷帕霉素治疗可防止甲状腺肿大,并恢复TPO-TSC2KO小鼠的基因表达变化。虽然TPO-TSC2KO小鼠在2月龄时T4、T3和TSH血浆水平正常,但在6月龄和12月龄时观察到T4水平略有下降,TSH水平上升,而T3与同窝对照小鼠相比保持相似:我们的甲状腺细胞特异性小鼠模型揭示了 mTORC1 激活可抑制 TH 的生物合成、抑制甲状腺细胞基因表达并促进生长和增殖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Defining the In Vivo Role of mTORC1 in Thyrocytes by Studying the TSC2 Conditional Knockout Mouse Model.

Background: The thyroid gland is susceptible to abnormal epithelial cell growth, often resulting in thyroid dysfunction. The serine-threonine protein kinase mechanistic target of rapamycin (mTOR) regulates cellular metabolism, proliferation, and growth through two different protein complexes, mTORC1 and mTORC2. The PI3K-Akt-mTORC1 pathway's overactivity is well associated with heightened aggressiveness in thyroid cancer, but recent studies indicate the involvement of mTORC2 as well. Methods: To elucidate mTORC1's role in thyrocytes, we developed a novel mouse model with mTORC1 gain of function in thyrocytes by deleting tuberous sclerosis complex 2 (TSC2), an intracellular inhibitor of mTORC1. Results: The resulting TPO-TSC2KO mice exhibited a 70-80% reduction in TSC2 levels, leading to a sixfold increase in mTORC1 activity. Thyroid glands of both male and female TPO-TSC2KO mice displayed rapid enlargement and continued growth throughout life, with larger follicles and increased colloid and epithelium areas. We observed elevated thyrocyte proliferation as indicated by Ki67 staining and elevated cyclin D3 expression in the TPO-TSC2KO mice. mTORC1 activation resulted in a progressive downregulation of key genes involved in thyroid hormone biosynthesis, including thyroglobulin (Tg), thyroid peroxidase (Tpo), and sodium-iodide symporter (Nis), while Tff1, Pax8, and Mct8 mRNA levels remained unaffected. NIS protein expression was also diminished in TPO-TSC2KO mice. Treatment with the mTORC1 inhibitor rapamycin prevented thyroid mass expansion and restored the gene expression alterations in TPO-TSC2KO mice. Although total thyroxine (T4), total triiodothyronine (T3), and TSH plasma levels were normal at 2 months of age, a slight decrease in T4 and an increase in TSH levels were observed at 6 and 12 months of age while T3 remained similar in TPO-TSC2KO compared with littermate control mice. Conclusions: Our thyrocyte-specific mouse model reveals that mTORC1 activation inhibits thyroid hormone (TH) biosynthesis, suppresses thyrocyte gene expression, and promotes growth and proliferation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thyroid
Thyroid 医学-内分泌学与代谢
CiteScore
12.30
自引率
6.10%
发文量
195
审稿时长
6 months
期刊介绍: This authoritative journal program, including the monthly flagship journal Thyroid, Clinical Thyroidology® (monthly), and VideoEndocrinology™ (quarterly), delivers in-depth coverage on topics from clinical application and primary care, to the latest advances in diagnostic imaging and surgical techniques and technologies, designed to optimize patient care and outcomes. Thyroid is the leading, peer-reviewed resource for original articles, patient-focused reports, and translational research on thyroid cancer and all thyroid related diseases. The Journal delivers the latest findings on topics from primary care to clinical application, and is the exclusive source for the authoritative and updated American Thyroid Association (ATA) Guidelines for Managing Thyroid Disease.
期刊最新文献
Examining Why Thyroid Cancer Incidence Is High in Women. Differential Ultrasound Rates Mirror Sex Disparities in Thyroid Cancer. Irwin Klein, MD (1946-2024). Surgical and Pathological Challenges in Thyroidectomy after Thermal Ablation of Thyroid Nodules. Association Between Environmental Air Pollution and Thyroid Cancer and Nodules: A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1