{"title":"具有固化子群的时间到事件数据的因果推理。","authors":"Yi Wang, Yuhao Deng, Xiao-Hua Zhou","doi":"10.1093/biomtc/ujae028","DOIUrl":null,"url":null,"abstract":"<p><p>When studying the treatment effect on time-to-event outcomes, it is common that some individuals never experience failure events, which suggests that they have been cured. However, the cure status may not be observed due to censoring which makes it challenging to define treatment effects. Current methods mainly focus on estimating model parameters in various cure models, ultimately leading to a lack of causal interpretations. To address this issue, we propose 2 causal estimands, the timewise risk difference and mean survival time difference, in the always-uncured based on principal stratification as a complement to the treatment effect on cure rates. These estimands allow us to study the treatment effects on failure times in the always-uncured subpopulation. We show the identifiability using a substitutional variable for the potential cure status under ignorable treatment assignment mechanism, these 2 estimands are identifiable. We also provide estimation methods using mixture cure models. We applied our approach to an observational study that compared the leukemia-free survival rates of different transplantation types to cure acute lymphoblastic leukemia. Our proposed approach yielded insightful results that can be used to inform future treatment decisions.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal inference for time-to-event data with a cured subpopulation.\",\"authors\":\"Yi Wang, Yuhao Deng, Xiao-Hua Zhou\",\"doi\":\"10.1093/biomtc/ujae028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When studying the treatment effect on time-to-event outcomes, it is common that some individuals never experience failure events, which suggests that they have been cured. However, the cure status may not be observed due to censoring which makes it challenging to define treatment effects. Current methods mainly focus on estimating model parameters in various cure models, ultimately leading to a lack of causal interpretations. To address this issue, we propose 2 causal estimands, the timewise risk difference and mean survival time difference, in the always-uncured based on principal stratification as a complement to the treatment effect on cure rates. These estimands allow us to study the treatment effects on failure times in the always-uncured subpopulation. We show the identifiability using a substitutional variable for the potential cure status under ignorable treatment assignment mechanism, these 2 estimands are identifiable. We also provide estimation methods using mixture cure models. We applied our approach to an observational study that compared the leukemia-free survival rates of different transplantation types to cure acute lymphoblastic leukemia. Our proposed approach yielded insightful results that can be used to inform future treatment decisions.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"80 2\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae028\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Causal inference for time-to-event data with a cured subpopulation.
When studying the treatment effect on time-to-event outcomes, it is common that some individuals never experience failure events, which suggests that they have been cured. However, the cure status may not be observed due to censoring which makes it challenging to define treatment effects. Current methods mainly focus on estimating model parameters in various cure models, ultimately leading to a lack of causal interpretations. To address this issue, we propose 2 causal estimands, the timewise risk difference and mean survival time difference, in the always-uncured based on principal stratification as a complement to the treatment effect on cure rates. These estimands allow us to study the treatment effects on failure times in the always-uncured subpopulation. We show the identifiability using a substitutional variable for the potential cure status under ignorable treatment assignment mechanism, these 2 estimands are identifiable. We also provide estimation methods using mixture cure models. We applied our approach to an observational study that compared the leukemia-free survival rates of different transplantation types to cure acute lymphoblastic leukemia. Our proposed approach yielded insightful results that can be used to inform future treatment decisions.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.