Armando Del Prete, Piero Franco, Matteo Innocenti, Fabrizio Matassi, Filippo Leggieri, Rosario Jr Sagliocco, Roberto Civinini
{"title":"用于前交叉韧带翻修手术的特定患者计算机三维建模和定制指南。","authors":"Armando Del Prete, Piero Franco, Matteo Innocenti, Fabrizio Matassi, Filippo Leggieri, Rosario Jr Sagliocco, Roberto Civinini","doi":"10.1055/a-2315-7873","DOIUrl":null,"url":null,"abstract":"<p><p>Revision anterior cruciate ligament reconstruction (ACLR) is a challenging surgery occurring in 3 to 24% of primary reconstructions. A meticulous planning to study the precise size and location of both femoral and tibial bone tunnels is mandatory. The aim of the study was to evaluate the intra- and interoperator differences in the decision-making process between experienced surgeons after they were asked to make preoperative planning for ACL revision reconstruction with the use of both the computed tomography (CT) scan and a three-dimensional (3D)-printed model of the knee. Data collected from 23 consecutive patients undergoing revision of ACLR for graft failure at a single institute between September 2018 and February 2020 were prospectively reviewed. The double-blinded collected data were presented to three board-certificate attending surgeons. Surgeons were asked to decide whether to perform one-stage or two-stage revision ACLR based on the evaluation of the CT scan images and the 3D-printed custom-made models at two different rounds, T0 and T1, respectively, 7 days apart one from the other. Interoperator consensus following technical mistake was 52% at T0 and 56% at T1 using the CT scans, meanwhile concordance was 95% at T0 and 94% at T1 using the 3D models. Concordance between surgeons following new knee injury was 66% at T0 and 70% at T1 using CT scans, while concordance was 96% both at T0 and T1 using 3D models. Intraoperative variability using 3D models was extremely low: concordance at T0 and T1 was 98%. McNemar test showed a statistical significance in the use of 3D model for preoperative planning (<i>p</i> < 0.005). 3D-printed model reliability resulted to be higher compared with CT as intraoperator surgery technique selection was not modified throughout time from T0 to T1 (<i>p</i> < 0.005). The use of 3D-printed models had the most impact when evaluating femoral and tibial tunnels, resulting to be a useful instrument during preoperative planning of revision ACLR between attending surgeons with medium-high workflow.</p>","PeriodicalId":48798,"journal":{"name":"Journal of Knee Surgery","volume":" ","pages":"804-811"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer Patient-Specific 3D Modeling and Custom-Made Guides for Revision ACL Surgery.\",\"authors\":\"Armando Del Prete, Piero Franco, Matteo Innocenti, Fabrizio Matassi, Filippo Leggieri, Rosario Jr Sagliocco, Roberto Civinini\",\"doi\":\"10.1055/a-2315-7873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Revision anterior cruciate ligament reconstruction (ACLR) is a challenging surgery occurring in 3 to 24% of primary reconstructions. A meticulous planning to study the precise size and location of both femoral and tibial bone tunnels is mandatory. The aim of the study was to evaluate the intra- and interoperator differences in the decision-making process between experienced surgeons after they were asked to make preoperative planning for ACL revision reconstruction with the use of both the computed tomography (CT) scan and a three-dimensional (3D)-printed model of the knee. Data collected from 23 consecutive patients undergoing revision of ACLR for graft failure at a single institute between September 2018 and February 2020 were prospectively reviewed. The double-blinded collected data were presented to three board-certificate attending surgeons. Surgeons were asked to decide whether to perform one-stage or two-stage revision ACLR based on the evaluation of the CT scan images and the 3D-printed custom-made models at two different rounds, T0 and T1, respectively, 7 days apart one from the other. Interoperator consensus following technical mistake was 52% at T0 and 56% at T1 using the CT scans, meanwhile concordance was 95% at T0 and 94% at T1 using the 3D models. Concordance between surgeons following new knee injury was 66% at T0 and 70% at T1 using CT scans, while concordance was 96% both at T0 and T1 using 3D models. Intraoperative variability using 3D models was extremely low: concordance at T0 and T1 was 98%. McNemar test showed a statistical significance in the use of 3D model for preoperative planning (<i>p</i> < 0.005). 3D-printed model reliability resulted to be higher compared with CT as intraoperator surgery technique selection was not modified throughout time from T0 to T1 (<i>p</i> < 0.005). The use of 3D-printed models had the most impact when evaluating femoral and tibial tunnels, resulting to be a useful instrument during preoperative planning of revision ACLR between attending surgeons with medium-high workflow.</p>\",\"PeriodicalId\":48798,\"journal\":{\"name\":\"Journal of Knee Surgery\",\"volume\":\" \",\"pages\":\"804-811\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Knee Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2315-7873\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Knee Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2315-7873","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Computer Patient-Specific 3D Modeling and Custom-Made Guides for Revision ACL Surgery.
Revision anterior cruciate ligament reconstruction (ACLR) is a challenging surgery occurring in 3 to 24% of primary reconstructions. A meticulous planning to study the precise size and location of both femoral and tibial bone tunnels is mandatory. The aim of the study was to evaluate the intra- and interoperator differences in the decision-making process between experienced surgeons after they were asked to make preoperative planning for ACL revision reconstruction with the use of both the computed tomography (CT) scan and a three-dimensional (3D)-printed model of the knee. Data collected from 23 consecutive patients undergoing revision of ACLR for graft failure at a single institute between September 2018 and February 2020 were prospectively reviewed. The double-blinded collected data were presented to three board-certificate attending surgeons. Surgeons were asked to decide whether to perform one-stage or two-stage revision ACLR based on the evaluation of the CT scan images and the 3D-printed custom-made models at two different rounds, T0 and T1, respectively, 7 days apart one from the other. Interoperator consensus following technical mistake was 52% at T0 and 56% at T1 using the CT scans, meanwhile concordance was 95% at T0 and 94% at T1 using the 3D models. Concordance between surgeons following new knee injury was 66% at T0 and 70% at T1 using CT scans, while concordance was 96% both at T0 and T1 using 3D models. Intraoperative variability using 3D models was extremely low: concordance at T0 and T1 was 98%. McNemar test showed a statistical significance in the use of 3D model for preoperative planning (p < 0.005). 3D-printed model reliability resulted to be higher compared with CT as intraoperator surgery technique selection was not modified throughout time from T0 to T1 (p < 0.005). The use of 3D-printed models had the most impact when evaluating femoral and tibial tunnels, resulting to be a useful instrument during preoperative planning of revision ACLR between attending surgeons with medium-high workflow.
期刊介绍:
The Journal of Knee Surgery covers a range of issues relating to the orthopaedic techniques of arthroscopy, arthroplasty, and reconstructive surgery of the knee joint. In addition to original peer-review articles, this periodical provides details on emerging surgical techniques, as well as reviews and special focus sections. Topics of interest include cruciate ligament repair and reconstruction, bone grafting, cartilage regeneration, and magnetic resonance imaging.