Amit Koul, Lok Tin Hui, Nikhat Lubna, Sean A McKenna
{"title":"2'-5'-oligoadenylate 合成酶不同的结构域和多样性。","authors":"Amit Koul, Lok Tin Hui, Nikhat Lubna, Sean A McKenna","doi":"10.1139/bcb-2023-0369","DOIUrl":null,"url":null,"abstract":"<p><p>The 2'-5'-oligoadenylate synthetases (OAS) are important components of the innate immune system that recognize viral double-stranded RNA (dsRNA). Upon dsRNA binding, OAS generate 2'-5'-linked oligoadenylates (2-5A) that activate ribonuclease L (RNase L), halting viral replication. The OAS/RNase L pathway is thus an important antiviral pathway and viruses have devised strategies to circumvent OAS activation. OAS enzymes are divided into four classes according to size: small (OAS1), medium (OAS2), and large (OAS3) that consist of one, two, and three OAS domains, respectively, and the OAS-like protein (OASL) that consists of one OAS domain and tandem domains similar to ubiquitin. Early investigation of the OAS enzymes hinted at the recognition of dsRNA by OAS, but due to size differences amongst OAS family members combined with the lack of structural information on full-length OAS2 and OAS3, the regulation of OAS catalytic activity by dsRNA was not well understood. However, the recent biophysical studies of OAS have highlighted overall structure and domain organization. In this review, we present a detailed examination of the OAS literature and summarized the investigation on 2'-5'-oligoadenylate synthetases.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinct domain organization and diversity of 2'-5'-oligoadenylate synthetases.\",\"authors\":\"Amit Koul, Lok Tin Hui, Nikhat Lubna, Sean A McKenna\",\"doi\":\"10.1139/bcb-2023-0369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The 2'-5'-oligoadenylate synthetases (OAS) are important components of the innate immune system that recognize viral double-stranded RNA (dsRNA). Upon dsRNA binding, OAS generate 2'-5'-linked oligoadenylates (2-5A) that activate ribonuclease L (RNase L), halting viral replication. The OAS/RNase L pathway is thus an important antiviral pathway and viruses have devised strategies to circumvent OAS activation. OAS enzymes are divided into four classes according to size: small (OAS1), medium (OAS2), and large (OAS3) that consist of one, two, and three OAS domains, respectively, and the OAS-like protein (OASL) that consists of one OAS domain and tandem domains similar to ubiquitin. Early investigation of the OAS enzymes hinted at the recognition of dsRNA by OAS, but due to size differences amongst OAS family members combined with the lack of structural information on full-length OAS2 and OAS3, the regulation of OAS catalytic activity by dsRNA was not well understood. However, the recent biophysical studies of OAS have highlighted overall structure and domain organization. In this review, we present a detailed examination of the OAS literature and summarized the investigation on 2'-5'-oligoadenylate synthetases.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2023-0369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/bcb-2023-0369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Distinct domain organization and diversity of 2'-5'-oligoadenylate synthetases.
The 2'-5'-oligoadenylate synthetases (OAS) are important components of the innate immune system that recognize viral double-stranded RNA (dsRNA). Upon dsRNA binding, OAS generate 2'-5'-linked oligoadenylates (2-5A) that activate ribonuclease L (RNase L), halting viral replication. The OAS/RNase L pathway is thus an important antiviral pathway and viruses have devised strategies to circumvent OAS activation. OAS enzymes are divided into four classes according to size: small (OAS1), medium (OAS2), and large (OAS3) that consist of one, two, and three OAS domains, respectively, and the OAS-like protein (OASL) that consists of one OAS domain and tandem domains similar to ubiquitin. Early investigation of the OAS enzymes hinted at the recognition of dsRNA by OAS, but due to size differences amongst OAS family members combined with the lack of structural information on full-length OAS2 and OAS3, the regulation of OAS catalytic activity by dsRNA was not well understood. However, the recent biophysical studies of OAS have highlighted overall structure and domain organization. In this review, we present a detailed examination of the OAS literature and summarized the investigation on 2'-5'-oligoadenylate synthetases.