基因型 x 环境交互作用与性双态性的进化:成年营养环境介导了黑腹蝇虫性别特异性遗传变异的选择和表达。

IF 2.1 3区 生物学 Q3 ECOLOGY Journal of Evolutionary Biology Pub Date : 2024-07-10 DOI:10.1093/jeb/voae050
Stephen P De Lisle
{"title":"基因型 x 环境交互作用与性双态性的进化:成年营养环境介导了黑腹蝇虫性别特异性遗传变异的选择和表达。","authors":"Stephen P De Lisle","doi":"10.1093/jeb/voae050","DOIUrl":null,"url":null,"abstract":"<p><p>Sexual conflict plays a key role in the dynamics of adaptive evolution in sexually reproducing populations, and theory suggests an important role for variance in resource acquisition in generating or masking sexual conflict over fitness and life history traits. Here, I used a quantitative genetic genotype × environment experiment in Drosophila melanogaster to test the theoretical prediction that variance in resource acquisition mediates variation in sex-specific component fitness. Holding larval conditions constant, I found that adult nutritional environments characterized by high protein content resulted in reduced survival of both sexes and lower male reproductive success compared to an environment of lower protein content. Despite reduced mean fitness of both sexes in high protein environments, I found a sex*treatment interaction for the relationship between resource acquisition and fitness; estimates of the adaptive landscape indicate males were furthest from their optimum resource acquisition level in high protein environments, and females were furthest in low protein environments. Expression of genetic variance in resource acquisition and survival was highest for each sex in the environment it was best adapted to, although the treatment effects on expression of genetic variance eroded in the path from resource acquisition to total fitness. Cross-sex genetic correlations were strongly positive for resource acquisition, survival, and total fitness and negative for mating success, although estimation error was high for all. These results demonstrate that environmental effects on resource acquisition can have predictable consequences for the expression of sex-specific genetic variance but also that these effects of resource acquisition can erode through life history.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genotype × Environment interaction and the evolution of sexual dimorphism: adult nutritional environment mediates selection and expression of sex-specific genetic variance in Drosophila melanogaster.\",\"authors\":\"Stephen P De Lisle\",\"doi\":\"10.1093/jeb/voae050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sexual conflict plays a key role in the dynamics of adaptive evolution in sexually reproducing populations, and theory suggests an important role for variance in resource acquisition in generating or masking sexual conflict over fitness and life history traits. Here, I used a quantitative genetic genotype × environment experiment in Drosophila melanogaster to test the theoretical prediction that variance in resource acquisition mediates variation in sex-specific component fitness. Holding larval conditions constant, I found that adult nutritional environments characterized by high protein content resulted in reduced survival of both sexes and lower male reproductive success compared to an environment of lower protein content. Despite reduced mean fitness of both sexes in high protein environments, I found a sex*treatment interaction for the relationship between resource acquisition and fitness; estimates of the adaptive landscape indicate males were furthest from their optimum resource acquisition level in high protein environments, and females were furthest in low protein environments. Expression of genetic variance in resource acquisition and survival was highest for each sex in the environment it was best adapted to, although the treatment effects on expression of genetic variance eroded in the path from resource acquisition to total fitness. Cross-sex genetic correlations were strongly positive for resource acquisition, survival, and total fitness and negative for mating success, although estimation error was high for all. These results demonstrate that environmental effects on resource acquisition can have predictable consequences for the expression of sex-specific genetic variance but also that these effects of resource acquisition can erode through life history.</p>\",\"PeriodicalId\":50198,\"journal\":{\"name\":\"Journal of Evolutionary Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolutionary Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jeb/voae050\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jeb/voae050","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

性冲突在有性繁殖种群的适应性进化动态中起着关键作用,而理论表明,资源获取的差异在产生或掩盖有关适应性和生活史特征的性冲突方面起着重要作用。在这里,我利用黑腹果蝇的定量遗传基因型 x 环境实验,验证了资源获取的差异介导性别特异性成分适应性差异的理论预测。在幼虫条件不变的情况下,我发现与蛋白质含量较低的环境相比,蛋白质含量高的成虫营养环境会导致雌雄果蝇的存活率降低,雄果蝇的繁殖成功率也会降低。尽管在高蛋白环境中雌雄个体的平均体能都有所下降,但我发现在资源获取和体能之间存在性别*处理的交互作用;对适应性景观的估计表明,在高蛋白环境中雄性个体离最佳资源获取水平最远,而在低蛋白环境中雌性个体离最佳资源获取水平最远。在最适应的环境中,每种性别在资源获取和存活方面的遗传变异表达都是最高的,尽管在从资源获取到总适应度的过程中,处理对遗传变异表达的影响会减弱。跨性别遗传相关性在资源获取、存活率和总适合度方面呈强正值,而在交配成功率方面呈负值,尽管所有相关性的估计误差都很大。这些结果表明,环境对资源获取的影响会对性别特异性遗传变异的表达产生可预测的后果,而且这些资源获取的影响会在整个生活史中逐渐消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genotype × Environment interaction and the evolution of sexual dimorphism: adult nutritional environment mediates selection and expression of sex-specific genetic variance in Drosophila melanogaster.

Sexual conflict plays a key role in the dynamics of adaptive evolution in sexually reproducing populations, and theory suggests an important role for variance in resource acquisition in generating or masking sexual conflict over fitness and life history traits. Here, I used a quantitative genetic genotype × environment experiment in Drosophila melanogaster to test the theoretical prediction that variance in resource acquisition mediates variation in sex-specific component fitness. Holding larval conditions constant, I found that adult nutritional environments characterized by high protein content resulted in reduced survival of both sexes and lower male reproductive success compared to an environment of lower protein content. Despite reduced mean fitness of both sexes in high protein environments, I found a sex*treatment interaction for the relationship between resource acquisition and fitness; estimates of the adaptive landscape indicate males were furthest from their optimum resource acquisition level in high protein environments, and females were furthest in low protein environments. Expression of genetic variance in resource acquisition and survival was highest for each sex in the environment it was best adapted to, although the treatment effects on expression of genetic variance eroded in the path from resource acquisition to total fitness. Cross-sex genetic correlations were strongly positive for resource acquisition, survival, and total fitness and negative for mating success, although estimation error was high for all. These results demonstrate that environmental effects on resource acquisition can have predictable consequences for the expression of sex-specific genetic variance but also that these effects of resource acquisition can erode through life history.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Evolutionary Biology
Journal of Evolutionary Biology 生物-进化生物学
CiteScore
4.20
自引率
4.80%
发文量
152
审稿时长
3-6 weeks
期刊介绍: It covers both micro- and macro-evolution of all types of organisms. The aim of the Journal is to integrate perspectives across molecular and microbial evolution, behaviour, genetics, ecology, life histories, development, palaeontology, systematics and morphology.
期刊最新文献
Variation in thermal courtship activity curves across individuals exceeds variation across populations and sexes. Selection for greater dispersal in early life increases rate of age-dependent decline in locomotor activity and shortens lifespan. The improbability of detecting trade-offs and some practical solutions. Evolution of the division of labour between templates and catalysts in spatial replicator models. The relationship between neutral genetic diversity and performance in wild arthropod populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1