{"title":"衰老雌性小鼠骨骼肌中的酶能力保持得更好,底物转运蛋白水平更高。","authors":"Kenya Takahashi, Yu Kitaoka, Hideo Hatta","doi":"10.1139/apnm-2024-0016","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated sex-specific differences in high-energy phosphate, glycolytic, and mitochondrial enzyme activities and also metabolite transporter protein levels in the skeletal muscles of adult (5 months old), middle-aged (12 months old), and advanced-aged (24 months old) mice. While gastrocnemius glycogen content increased with age regardless of sex, gastrocnemius triglyceride levels increased only in advanced-aged female mice. Aging decreased creatine kinase and adenylate kinase activities in the plantaris muscle of both sexes and in the soleus muscle of male mice but not in female mice. Irrespective of sex, phosphofructokinase and lactate dehydrogenase (LDH) activities decreased in the plantaris and soleus muscles. Additionally, hexokinase activity in the plantaris muscle and LDH activity in the soleus muscle decreased to a greater extent in aged male mice compared with those in aged female mice. Mitochondrial enzyme activities increased in the plantaris muscle of aged female mice but did not change in male mice. The protein content of the glucose transporter 4 in the aged plantaris muscle and fatty acid translocase/cluster of differentiation 36 increased in the aged plantaris and soleus muscles of both sexes, with a significantly higher content in female mice. These findings suggest that females possess a better ability to maintain metabolic enzyme activity and higher levels of metabolite transport proteins in skeletal muscle during aging, despite alterations in lipid metabolism. Our data provide a basis for studying muscle metabolism in the context of age-dependent metabolic perturbations and diseases that affect females and males differently.</p>","PeriodicalId":93878,"journal":{"name":"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme","volume":" ","pages":"1100-1114"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Better maintenance of enzymatic capacity and higher levels of substrate transporter proteins in skeletal muscle of aging female mice.\",\"authors\":\"Kenya Takahashi, Yu Kitaoka, Hideo Hatta\",\"doi\":\"10.1139/apnm-2024-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated sex-specific differences in high-energy phosphate, glycolytic, and mitochondrial enzyme activities and also metabolite transporter protein levels in the skeletal muscles of adult (5 months old), middle-aged (12 months old), and advanced-aged (24 months old) mice. While gastrocnemius glycogen content increased with age regardless of sex, gastrocnemius triglyceride levels increased only in advanced-aged female mice. Aging decreased creatine kinase and adenylate kinase activities in the plantaris muscle of both sexes and in the soleus muscle of male mice but not in female mice. Irrespective of sex, phosphofructokinase and lactate dehydrogenase (LDH) activities decreased in the plantaris and soleus muscles. Additionally, hexokinase activity in the plantaris muscle and LDH activity in the soleus muscle decreased to a greater extent in aged male mice compared with those in aged female mice. Mitochondrial enzyme activities increased in the plantaris muscle of aged female mice but did not change in male mice. The protein content of the glucose transporter 4 in the aged plantaris muscle and fatty acid translocase/cluster of differentiation 36 increased in the aged plantaris and soleus muscles of both sexes, with a significantly higher content in female mice. These findings suggest that females possess a better ability to maintain metabolic enzyme activity and higher levels of metabolite transport proteins in skeletal muscle during aging, despite alterations in lipid metabolism. Our data provide a basis for studying muscle metabolism in the context of age-dependent metabolic perturbations and diseases that affect females and males differently.</p>\",\"PeriodicalId\":93878,\"journal\":{\"name\":\"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme\",\"volume\":\" \",\"pages\":\"1100-1114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/apnm-2024-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/apnm-2024-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Better maintenance of enzymatic capacity and higher levels of substrate transporter proteins in skeletal muscle of aging female mice.
This study investigated sex-specific differences in high-energy phosphate, glycolytic, and mitochondrial enzyme activities and also metabolite transporter protein levels in the skeletal muscles of adult (5 months old), middle-aged (12 months old), and advanced-aged (24 months old) mice. While gastrocnemius glycogen content increased with age regardless of sex, gastrocnemius triglyceride levels increased only in advanced-aged female mice. Aging decreased creatine kinase and adenylate kinase activities in the plantaris muscle of both sexes and in the soleus muscle of male mice but not in female mice. Irrespective of sex, phosphofructokinase and lactate dehydrogenase (LDH) activities decreased in the plantaris and soleus muscles. Additionally, hexokinase activity in the plantaris muscle and LDH activity in the soleus muscle decreased to a greater extent in aged male mice compared with those in aged female mice. Mitochondrial enzyme activities increased in the plantaris muscle of aged female mice but did not change in male mice. The protein content of the glucose transporter 4 in the aged plantaris muscle and fatty acid translocase/cluster of differentiation 36 increased in the aged plantaris and soleus muscles of both sexes, with a significantly higher content in female mice. These findings suggest that females possess a better ability to maintain metabolic enzyme activity and higher levels of metabolite transport proteins in skeletal muscle during aging, despite alterations in lipid metabolism. Our data provide a basis for studying muscle metabolism in the context of age-dependent metabolic perturbations and diseases that affect females and males differently.