Nicolas Joly-Tonetti, Raphael Legouffe, Aurore Tomezyk, Clémence Gumez, Mathieu Gaudin, David Bonnel, Martin Schaller
{"title":"通过基质辅助激光解吸电离-傅立叶变换离子回旋共振成像量化特比萘芬与阿莫罗芬在霉菌性人类脚趾甲中的渗透概况。","authors":"Nicolas Joly-Tonetti, Raphael Legouffe, Aurore Tomezyk, Clémence Gumez, Mathieu Gaudin, David Bonnel, Martin Schaller","doi":"10.1007/s40121-024-00979-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Amorolfine 5% lacquer is an established topical treatment for fungal infection of the nails. The success of topical therapy for onychomycosis depends on whether the permeated drug concentration in the deep nail bed is retained above the effective antifungal minimum inhibitory concentration (MIC). We compared the penetration profile of amorolfine and a new topical formula of terbinafine in human mycotic toenails using matrix-assisted laser desorption ionization mass spectrometry imaging-Fourier transform ion cyclotron resonance (MALDI-FTICR) imaging.</p><p><strong>Methods: </strong>Amorolfine 5% lacquer and terbinafine 7.8% lacquer were applied to mycotic nails (n = 17); nail sections were prepared, and MALDI-FTICR analysis was performed. Based on the MICs of amorolfine and terbinafine needed to kill 90% (MIC<sub>90</sub>) of Trichophyton rubrum, the fold differences between the MIC<sub>90</sub> and the antifungal concentrations in the nails (the multiplicity of the MIC<sub>90</sub>) were calculated overall and for the keratin-unbound fractions.</p><p><strong>Results: </strong>Both amorolfine and terbinafine penetrated the entire thickness of the nail. The mean concentration across the entire nail section 3 h following terbinafine treatment was 1414 μg/g of tissue (equivalent to 4.9 mM) compared with 780 μg/g (2.5 mM) following amorolfine treatment (not significantly different; p = 0.878). The median multiplicity of the MIC<sub>90</sub> was significantly higher in amorolfine- than terbinafine-treated nails overall (191 vs. 48; p = 0.010) and for the keratin-unbound fractions only (7.4 vs. 0.8; p = 0.002).</p><p><strong>Conclusion: </strong>In this ex vivo study, MALDI-FTICR demonstrated that, although amorolfine 5% and terbinafine 7.8% had similar distribution profiles, both penetrating from the surface to the nail bed, the concentration of amorolfine in the nail was significantly higher than that of terbinafine relative to their respective MIC<sub>90</sub> values. Clinical studies are required to determine whether these effects translate to a clinical difference in treatment success.</p>","PeriodicalId":13592,"journal":{"name":"Infectious Diseases and Therapy","volume":" ","pages":"1281-1290"},"PeriodicalIF":4.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128419/pdf/","citationCount":"0","resultStr":"{\"title\":\"Penetration Profile of Terbinafine Compared to Amorolfine in Mycotic Human Toenails Quantified by Matrix-Assisted Laser Desorption Ionization-Fourier Transform Ion Cyclotron Resonance Imaging.\",\"authors\":\"Nicolas Joly-Tonetti, Raphael Legouffe, Aurore Tomezyk, Clémence Gumez, Mathieu Gaudin, David Bonnel, Martin Schaller\",\"doi\":\"10.1007/s40121-024-00979-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Amorolfine 5% lacquer is an established topical treatment for fungal infection of the nails. The success of topical therapy for onychomycosis depends on whether the permeated drug concentration in the deep nail bed is retained above the effective antifungal minimum inhibitory concentration (MIC). We compared the penetration profile of amorolfine and a new topical formula of terbinafine in human mycotic toenails using matrix-assisted laser desorption ionization mass spectrometry imaging-Fourier transform ion cyclotron resonance (MALDI-FTICR) imaging.</p><p><strong>Methods: </strong>Amorolfine 5% lacquer and terbinafine 7.8% lacquer were applied to mycotic nails (n = 17); nail sections were prepared, and MALDI-FTICR analysis was performed. Based on the MICs of amorolfine and terbinafine needed to kill 90% (MIC<sub>90</sub>) of Trichophyton rubrum, the fold differences between the MIC<sub>90</sub> and the antifungal concentrations in the nails (the multiplicity of the MIC<sub>90</sub>) were calculated overall and for the keratin-unbound fractions.</p><p><strong>Results: </strong>Both amorolfine and terbinafine penetrated the entire thickness of the nail. The mean concentration across the entire nail section 3 h following terbinafine treatment was 1414 μg/g of tissue (equivalent to 4.9 mM) compared with 780 μg/g (2.5 mM) following amorolfine treatment (not significantly different; p = 0.878). The median multiplicity of the MIC<sub>90</sub> was significantly higher in amorolfine- than terbinafine-treated nails overall (191 vs. 48; p = 0.010) and for the keratin-unbound fractions only (7.4 vs. 0.8; p = 0.002).</p><p><strong>Conclusion: </strong>In this ex vivo study, MALDI-FTICR demonstrated that, although amorolfine 5% and terbinafine 7.8% had similar distribution profiles, both penetrating from the surface to the nail bed, the concentration of amorolfine in the nail was significantly higher than that of terbinafine relative to their respective MIC<sub>90</sub> values. Clinical studies are required to determine whether these effects translate to a clinical difference in treatment success.</p>\",\"PeriodicalId\":13592,\"journal\":{\"name\":\"Infectious Diseases and Therapy\",\"volume\":\" \",\"pages\":\"1281-1290\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128419/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infectious Diseases and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40121-024-00979-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Diseases and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40121-024-00979-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Penetration Profile of Terbinafine Compared to Amorolfine in Mycotic Human Toenails Quantified by Matrix-Assisted Laser Desorption Ionization-Fourier Transform Ion Cyclotron Resonance Imaging.
Introduction: Amorolfine 5% lacquer is an established topical treatment for fungal infection of the nails. The success of topical therapy for onychomycosis depends on whether the permeated drug concentration in the deep nail bed is retained above the effective antifungal minimum inhibitory concentration (MIC). We compared the penetration profile of amorolfine and a new topical formula of terbinafine in human mycotic toenails using matrix-assisted laser desorption ionization mass spectrometry imaging-Fourier transform ion cyclotron resonance (MALDI-FTICR) imaging.
Methods: Amorolfine 5% lacquer and terbinafine 7.8% lacquer were applied to mycotic nails (n = 17); nail sections were prepared, and MALDI-FTICR analysis was performed. Based on the MICs of amorolfine and terbinafine needed to kill 90% (MIC90) of Trichophyton rubrum, the fold differences between the MIC90 and the antifungal concentrations in the nails (the multiplicity of the MIC90) were calculated overall and for the keratin-unbound fractions.
Results: Both amorolfine and terbinafine penetrated the entire thickness of the nail. The mean concentration across the entire nail section 3 h following terbinafine treatment was 1414 μg/g of tissue (equivalent to 4.9 mM) compared with 780 μg/g (2.5 mM) following amorolfine treatment (not significantly different; p = 0.878). The median multiplicity of the MIC90 was significantly higher in amorolfine- than terbinafine-treated nails overall (191 vs. 48; p = 0.010) and for the keratin-unbound fractions only (7.4 vs. 0.8; p = 0.002).
Conclusion: In this ex vivo study, MALDI-FTICR demonstrated that, although amorolfine 5% and terbinafine 7.8% had similar distribution profiles, both penetrating from the surface to the nail bed, the concentration of amorolfine in the nail was significantly higher than that of terbinafine relative to their respective MIC90 values. Clinical studies are required to determine whether these effects translate to a clinical difference in treatment success.
期刊介绍:
Infectious Diseases and Therapy is an international, open access, peer-reviewed, rapid publication journal dedicated to the publication of high-quality clinical (all phases), observational, real-world, and health outcomes research around the discovery, development, and use of infectious disease therapies and interventions, including vaccines and devices. Studies relating to diagnostic products and diagnosis, pharmacoeconomics, public health, epidemiology, quality of life, and patient care, management, and education are also encouraged.
Areas of focus include, but are not limited to, bacterial and fungal infections, viral infections (including HIV/AIDS and hepatitis), parasitological diseases, tuberculosis and other mycobacterial diseases, vaccinations and other interventions, and drug-resistance, chronic infections, epidemiology and tropical, emergent, pediatric, dermal and sexually-transmitted diseases.