联合使用富氢水和酶消化燕窝可改善 PMA/LPS 对人类炎症牙龈组织等效创伤愈合的影响。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-07-01 Epub Date: 2024-04-29 DOI:10.1007/s13577-024-01065-y
Dongliang Wang, Naohiro Shimamura, Nobuhiko Miwa, Li Xiao
{"title":"联合使用富氢水和酶消化燕窝可改善 PMA/LPS 对人类炎症牙龈组织等效创伤愈合的影响。","authors":"Dongliang Wang, Naohiro Shimamura, Nobuhiko Miwa, Li Xiao","doi":"10.1007/s13577-024-01065-y","DOIUrl":null,"url":null,"abstract":"<p><p>Gingival wound healing plays a critical role in maintaining oral health. However, this process can be delayed by oxidative stress and excessive inflammatory responses. In this study, we established a human inflammatory gingival tissue equivalent (iGTE) to investigate the inhibitory effects of hydrogen-rich water (HW), enzyme-digested edible bird's nest (EBND) and sialic acid (SA) on PMA (an inducer of oxidative free radicals)- and LPS (an inflammatory stimulus)-impaired wound healing. The iGTE was constructed by human gingival fibroblasts (hGFs), keratinocytes and macrophages under three-dimensional conditions. Wounds in the iGTE and hGF/keratinocyte monolayers were created by mechanical injury. Tissues and cells were pretreated with HW, EBND, and SA, and then exposed to the inflammatory and oxidative environment induced by PMA (10 ng/mL) and LPS (250 ng/mL). The inflammatory cytokines IL-6 and IL-8 were quantitatively analyzed by ELISA. Histopathological image analysis was performed by HE and immunofluorescence staining. In the iGTE, PMA/LPS significantly reduced the epithelial thickness while causing a decrease in K8/18, E-cadherin, laminin and elastin expression and an increase in COX-2 expression along with ulcer-like lesions. In mechanically scratched hGFs and keratinocyte monolayers, PMA/LPS significantly impaired wound healing, and promoted the secretion of IL-6 and IL-8. Pretreatment of HW, EBND, and SA significantly suppressed PMA/LPS-induced wound healing delay and inflammatory responses in cell monolayers, as well as in the iGTE. Remarkably, the combined use of HW and EBND exhibited particularly robust results. Combined use of HW and EBND may be applied for the prevention and treatment of wound healing delay.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined use of hydrogen-rich water and enzyme-digested edible bird's nest improves PMA/LPS-impaired wound healing in human inflammatory gingival tissue equivalents.\",\"authors\":\"Dongliang Wang, Naohiro Shimamura, Nobuhiko Miwa, Li Xiao\",\"doi\":\"10.1007/s13577-024-01065-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gingival wound healing plays a critical role in maintaining oral health. However, this process can be delayed by oxidative stress and excessive inflammatory responses. In this study, we established a human inflammatory gingival tissue equivalent (iGTE) to investigate the inhibitory effects of hydrogen-rich water (HW), enzyme-digested edible bird's nest (EBND) and sialic acid (SA) on PMA (an inducer of oxidative free radicals)- and LPS (an inflammatory stimulus)-impaired wound healing. The iGTE was constructed by human gingival fibroblasts (hGFs), keratinocytes and macrophages under three-dimensional conditions. Wounds in the iGTE and hGF/keratinocyte monolayers were created by mechanical injury. Tissues and cells were pretreated with HW, EBND, and SA, and then exposed to the inflammatory and oxidative environment induced by PMA (10 ng/mL) and LPS (250 ng/mL). The inflammatory cytokines IL-6 and IL-8 were quantitatively analyzed by ELISA. Histopathological image analysis was performed by HE and immunofluorescence staining. In the iGTE, PMA/LPS significantly reduced the epithelial thickness while causing a decrease in K8/18, E-cadherin, laminin and elastin expression and an increase in COX-2 expression along with ulcer-like lesions. In mechanically scratched hGFs and keratinocyte monolayers, PMA/LPS significantly impaired wound healing, and promoted the secretion of IL-6 and IL-8. Pretreatment of HW, EBND, and SA significantly suppressed PMA/LPS-induced wound healing delay and inflammatory responses in cell monolayers, as well as in the iGTE. Remarkably, the combined use of HW and EBND exhibited particularly robust results. Combined use of HW and EBND may be applied for the prevention and treatment of wound healing delay.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13577-024-01065-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-024-01065-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

牙龈伤口愈合在维护口腔健康方面起着至关重要的作用。然而,氧化应激和过度的炎症反应会延迟这一过程。在这项研究中,我们建立了人炎症牙龈组织等效物(iGTE),以研究富氢水(HW)、酶消化燕窝(EBND)和硅铝酸(SA)对氧化自由基诱导物 PMA 和炎症刺激物 LPS 损伤伤口愈合的抑制作用。iGTE 由人牙龈成纤维细胞(hGFs)、角质形成细胞和巨噬细胞在三维条件下构建而成。iGTE 和 hGF/角质形成细胞单层中的伤口是通过机械损伤造成的。用 HW、EBND 和 SA 对组织和细胞进行预处理,然后将其暴露在 PMA(10 ng/mL)和 LPS(250 ng/mL)诱导的炎症和氧化环境中。炎症细胞因子 IL-6 和 IL-8 通过 ELISA 进行定量分析。通过 HE 和免疫荧光染色进行组织病理学图像分析。在 iGTE 中,PMA/LPS 明显降低了上皮厚度,同时导致 K8/18、E-cadherin、层粘连蛋白和弹性蛋白表达减少,COX-2 表达增加,并出现溃疡样病变。在机械划伤的 hGFs 和角质形成细胞单层中,PMA/LPS 会显著影响伤口愈合,并促进 IL-6 和 IL-8 的分泌。预处理 HW、EBND 和 SA 能明显抑制 PMA/LPS 诱导的伤口愈合延迟和细胞单层以及 iGTE 中的炎症反应。值得注意的是,联合使用 HW 和 EBND 的效果尤为明显。联合使用 HW 和 EBND 可用于预防和治疗伤口愈合延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combined use of hydrogen-rich water and enzyme-digested edible bird's nest improves PMA/LPS-impaired wound healing in human inflammatory gingival tissue equivalents.

Gingival wound healing plays a critical role in maintaining oral health. However, this process can be delayed by oxidative stress and excessive inflammatory responses. In this study, we established a human inflammatory gingival tissue equivalent (iGTE) to investigate the inhibitory effects of hydrogen-rich water (HW), enzyme-digested edible bird's nest (EBND) and sialic acid (SA) on PMA (an inducer of oxidative free radicals)- and LPS (an inflammatory stimulus)-impaired wound healing. The iGTE was constructed by human gingival fibroblasts (hGFs), keratinocytes and macrophages under three-dimensional conditions. Wounds in the iGTE and hGF/keratinocyte monolayers were created by mechanical injury. Tissues and cells were pretreated with HW, EBND, and SA, and then exposed to the inflammatory and oxidative environment induced by PMA (10 ng/mL) and LPS (250 ng/mL). The inflammatory cytokines IL-6 and IL-8 were quantitatively analyzed by ELISA. Histopathological image analysis was performed by HE and immunofluorescence staining. In the iGTE, PMA/LPS significantly reduced the epithelial thickness while causing a decrease in K8/18, E-cadherin, laminin and elastin expression and an increase in COX-2 expression along with ulcer-like lesions. In mechanically scratched hGFs and keratinocyte monolayers, PMA/LPS significantly impaired wound healing, and promoted the secretion of IL-6 and IL-8. Pretreatment of HW, EBND, and SA significantly suppressed PMA/LPS-induced wound healing delay and inflammatory responses in cell monolayers, as well as in the iGTE. Remarkably, the combined use of HW and EBND exhibited particularly robust results. Combined use of HW and EBND may be applied for the prevention and treatment of wound healing delay.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1