为放射科选择合适的人工智能解决方案:需要考虑的关键因素。

IF 1.4 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Diagnostic and interventional radiology Pub Date : 2024-11-06 Epub Date: 2024-04-29 DOI:10.4274/dir.2024.232658
Deniz Alis, Toygar Tanyel, Emine Meltem, Mustafa Ege Seker, Delal Seker, Hakkı Muammer Karakaş, Ercan Karaarslan, İlkay Öksüz
{"title":"为放射科选择合适的人工智能解决方案:需要考虑的关键因素。","authors":"Deniz Alis, Toygar Tanyel, Emine Meltem, Mustafa Ege Seker, Delal Seker, Hakkı Muammer Karakaş, Ercan Karaarslan, İlkay Öksüz","doi":"10.4274/dir.2024.232658","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid evolution of artificial intelligence (AI), particularly in deep learning, has significantly impacted radiology, introducing an array of AI solutions for interpretative tasks. This paper provides radiology departments with a practical guide for selecting and integrating AI solutions, focusing on interpretative tasks that require the active involvement of radiologists. Our approach is not to list available applications or review scientific evidence, as this information is readily available in previous studies; instead, we concentrate on the essential factors radiology departments must consider when choosing AI solutions. These factors include clinical relevance, performance and validation, implementation and integration, clinical usability, costs and return on investment, and regulations, security, and privacy. We illustrate each factor with hypothetical scenarios to provide a clearer understanding and practical relevance. Through our experience and literature review, we provide insights and a practical roadmap for radiologists to navigate the complex landscape of AI in radiology. We aim to assist in making informed decisions that enhance diagnostic precision, improve patient outcomes, and streamline workflows, thus contributing to the advancement of radiological practices and patient care.</p>","PeriodicalId":11341,"journal":{"name":"Diagnostic and interventional radiology","volume":" ","pages":"357-365"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589526/pdf/","citationCount":"0","resultStr":"{\"title\":\"Choosing the right artificial intelligence solutions for your radiology department: key factors to consider\",\"authors\":\"Deniz Alis, Toygar Tanyel, Emine Meltem, Mustafa Ege Seker, Delal Seker, Hakkı Muammer Karakaş, Ercan Karaarslan, İlkay Öksüz\",\"doi\":\"10.4274/dir.2024.232658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid evolution of artificial intelligence (AI), particularly in deep learning, has significantly impacted radiology, introducing an array of AI solutions for interpretative tasks. This paper provides radiology departments with a practical guide for selecting and integrating AI solutions, focusing on interpretative tasks that require the active involvement of radiologists. Our approach is not to list available applications or review scientific evidence, as this information is readily available in previous studies; instead, we concentrate on the essential factors radiology departments must consider when choosing AI solutions. These factors include clinical relevance, performance and validation, implementation and integration, clinical usability, costs and return on investment, and regulations, security, and privacy. We illustrate each factor with hypothetical scenarios to provide a clearer understanding and practical relevance. Through our experience and literature review, we provide insights and a practical roadmap for radiologists to navigate the complex landscape of AI in radiology. We aim to assist in making informed decisions that enhance diagnostic precision, improve patient outcomes, and streamline workflows, thus contributing to the advancement of radiological practices and patient care.</p>\",\"PeriodicalId\":11341,\"journal\":{\"name\":\"Diagnostic and interventional radiology\",\"volume\":\" \",\"pages\":\"357-365\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589526/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostic and interventional radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4274/dir.2024.232658\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and interventional radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4274/dir.2024.232658","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)的快速发展,尤其是在深度学习方面,对放射学产生了重大影响,为判读任务引入了一系列人工智能解决方案。本文为放射科提供了选择和整合人工智能解决方案的实用指南,重点关注需要放射医师积极参与的判读任务。我们的方法不是列出现有的应用或回顾科学证据,因为这些信息在以前的研究中很容易找到;相反,我们集中讨论放射科在选择人工智能解决方案时必须考虑的基本因素。这些因素包括临床相关性、性能和验证、实施和集成、临床可用性、成本和投资回报以及法规、安全和隐私。我们用假设场景来说明每个因素,以提供更清晰的理解和实际意义。通过我们的经验和文献综述,我们为放射科医生提供了洞察力和实用的路线图,帮助他们驾驭放射科人工智能的复杂局面。我们的目标是协助他们做出明智的决定,以提高诊断精度、改善患者预后并简化工作流程,从而促进放射学实践和患者护理的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Choosing the right artificial intelligence solutions for your radiology department: key factors to consider

The rapid evolution of artificial intelligence (AI), particularly in deep learning, has significantly impacted radiology, introducing an array of AI solutions for interpretative tasks. This paper provides radiology departments with a practical guide for selecting and integrating AI solutions, focusing on interpretative tasks that require the active involvement of radiologists. Our approach is not to list available applications or review scientific evidence, as this information is readily available in previous studies; instead, we concentrate on the essential factors radiology departments must consider when choosing AI solutions. These factors include clinical relevance, performance and validation, implementation and integration, clinical usability, costs and return on investment, and regulations, security, and privacy. We illustrate each factor with hypothetical scenarios to provide a clearer understanding and practical relevance. Through our experience and literature review, we provide insights and a practical roadmap for radiologists to navigate the complex landscape of AI in radiology. We aim to assist in making informed decisions that enhance diagnostic precision, improve patient outcomes, and streamline workflows, thus contributing to the advancement of radiological practices and patient care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diagnostic and interventional radiology
Diagnostic and interventional radiology Medicine-Radiology, Nuclear Medicine and Imaging
自引率
4.80%
发文量
0
期刊介绍: Diagnostic and Interventional Radiology (Diagn Interv Radiol) is the open access, online-only official publication of Turkish Society of Radiology. It is published bimonthly and the journal’s publication language is English. The journal is a medium for original articles, reviews, pictorial essays, technical notes related to all fields of diagnostic and interventional radiology.
期刊最新文献
Automatic machine learning accurately predicts the efficacy of immunotherapy for patients with inoperable advanced non-small cell lung cancer using a computed tomography-based radiomics model. New imaging techniques and trends in radiology. Reply: evaluating Microsoft Bing with ChatGPT-4 for the assessment of abdominal computed tomography and magnetic resonance images. Endovascular recanalization of infra-popliteal TASC C and TASC D lesions in patients with critical limb-threatening ischemia: a single-center experience. Staged angioplasty using a full-length balloon catheter to achieve maturation of arteriovenous fistulas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1