{"title":"含有槲皮素封装纳米颗粒的细胞脊髓支架在大鼠脊髓损伤的功能恢复中发挥抗炎作用。","authors":"Babak Ebrahimi, Tahmineh Mokhtari, Neda Ghaffari, Mahdi Adabi, Gholamreza Hassanzadeh","doi":"10.1007/s10787-024-01478-z","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory responses play a crucial role in the pathophysiology of spinal cord injury (SCI) and developing new approaches to establish an anti-inflammatory environment for the promotion of neuroregeneration holds promise as a potential approach. In this study, our aim was to investigate the potential of combining an acellular spinal cord scaffold (ASCS) with quercetin-loaded bovine serum albumin (Qu/BSA) nanoparticles (NPs) for the treatment of SCI. The ASCS was prepared using physical and chemical methods, while the Qu/BSA NPs were prepared through a desolvation technique. The NPs exhibited favorable characteristics, including a mean size of 203 nm, a zeta potential of -38, and an encapsulation efficiency of 96%. Microscopic evaluation confirmed the successful distribution of NPs on the walls of ASCS. Animal studies revealed that Qu/BSA NPs group exhibited a significant decrease in NLRP3, ASC, and Casp1 gene expression compared to the SCI group (p < 0.0001). The findings indicated a significant decrease in the NLRP3, ASC, and Casp1 protein level between the Qu/BSA/ASCS group and the SCI group (p < 0.0001). Moreover, treatment with ASCS containing either blank BSA (B/BSA) NPs or Qu/BSA NPs effectively promoted functional recovery via increasing the amount of nestin- and glial fibrillary acidic protein (GFAP)-positive cells in the site of injury. Notably, Qu/BSA/ASCS exhibited superior outcomes compared to B/BSA/ASCS. Overall, the combination of ASCS with the Qu delivery system presents a promising therapeutic approach for SCI by inhibiting inflammatory responses and promoting neuroregeneration, leading to the restoration of motor function in animals. This study demonstrates the potential of utilizing biomaterials and NPs to enhance the effectiveness of SCI treatment.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":"2505-2524"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acellular spinal cord scaffold containing quercetin-encapsulated nanoparticles plays an anti-inflammatory role in functional recovery from spinal cord injury in rats.\",\"authors\":\"Babak Ebrahimi, Tahmineh Mokhtari, Neda Ghaffari, Mahdi Adabi, Gholamreza Hassanzadeh\",\"doi\":\"10.1007/s10787-024-01478-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammatory responses play a crucial role in the pathophysiology of spinal cord injury (SCI) and developing new approaches to establish an anti-inflammatory environment for the promotion of neuroregeneration holds promise as a potential approach. In this study, our aim was to investigate the potential of combining an acellular spinal cord scaffold (ASCS) with quercetin-loaded bovine serum albumin (Qu/BSA) nanoparticles (NPs) for the treatment of SCI. The ASCS was prepared using physical and chemical methods, while the Qu/BSA NPs were prepared through a desolvation technique. The NPs exhibited favorable characteristics, including a mean size of 203 nm, a zeta potential of -38, and an encapsulation efficiency of 96%. Microscopic evaluation confirmed the successful distribution of NPs on the walls of ASCS. Animal studies revealed that Qu/BSA NPs group exhibited a significant decrease in NLRP3, ASC, and Casp1 gene expression compared to the SCI group (p < 0.0001). The findings indicated a significant decrease in the NLRP3, ASC, and Casp1 protein level between the Qu/BSA/ASCS group and the SCI group (p < 0.0001). Moreover, treatment with ASCS containing either blank BSA (B/BSA) NPs or Qu/BSA NPs effectively promoted functional recovery via increasing the amount of nestin- and glial fibrillary acidic protein (GFAP)-positive cells in the site of injury. Notably, Qu/BSA/ASCS exhibited superior outcomes compared to B/BSA/ASCS. Overall, the combination of ASCS with the Qu delivery system presents a promising therapeutic approach for SCI by inhibiting inflammatory responses and promoting neuroregeneration, leading to the restoration of motor function in animals. This study demonstrates the potential of utilizing biomaterials and NPs to enhance the effectiveness of SCI treatment.</p>\",\"PeriodicalId\":13551,\"journal\":{\"name\":\"Inflammopharmacology\",\"volume\":\" \",\"pages\":\"2505-2524\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10787-024-01478-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-024-01478-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Acellular spinal cord scaffold containing quercetin-encapsulated nanoparticles plays an anti-inflammatory role in functional recovery from spinal cord injury in rats.
Inflammatory responses play a crucial role in the pathophysiology of spinal cord injury (SCI) and developing new approaches to establish an anti-inflammatory environment for the promotion of neuroregeneration holds promise as a potential approach. In this study, our aim was to investigate the potential of combining an acellular spinal cord scaffold (ASCS) with quercetin-loaded bovine serum albumin (Qu/BSA) nanoparticles (NPs) for the treatment of SCI. The ASCS was prepared using physical and chemical methods, while the Qu/BSA NPs were prepared through a desolvation technique. The NPs exhibited favorable characteristics, including a mean size of 203 nm, a zeta potential of -38, and an encapsulation efficiency of 96%. Microscopic evaluation confirmed the successful distribution of NPs on the walls of ASCS. Animal studies revealed that Qu/BSA NPs group exhibited a significant decrease in NLRP3, ASC, and Casp1 gene expression compared to the SCI group (p < 0.0001). The findings indicated a significant decrease in the NLRP3, ASC, and Casp1 protein level between the Qu/BSA/ASCS group and the SCI group (p < 0.0001). Moreover, treatment with ASCS containing either blank BSA (B/BSA) NPs or Qu/BSA NPs effectively promoted functional recovery via increasing the amount of nestin- and glial fibrillary acidic protein (GFAP)-positive cells in the site of injury. Notably, Qu/BSA/ASCS exhibited superior outcomes compared to B/BSA/ASCS. Overall, the combination of ASCS with the Qu delivery system presents a promising therapeutic approach for SCI by inhibiting inflammatory responses and promoting neuroregeneration, leading to the restoration of motor function in animals. This study demonstrates the potential of utilizing biomaterials and NPs to enhance the effectiveness of SCI treatment.
期刊介绍:
Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas:
-Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states
-Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs
-Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents
-Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain
-Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs
-Muscle-immune interactions during inflammation [...]