用于治疗术后疼痛的局部麻醉给药系统。

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL Acta Biomaterialia Pub Date : 2024-06-01 DOI:10.1016/j.actbio.2024.04.034
Mingxu Zhao , Mengni Zhou , Pengcheng Lu , Ying Wang , Rong Zeng , Lifang Liu , Shasha Zhu , Lingsuo Kong , Jiqian Zhang
{"title":"用于治疗术后疼痛的局部麻醉给药系统。","authors":"Mingxu Zhao ,&nbsp;Mengni Zhou ,&nbsp;Pengcheng Lu ,&nbsp;Ying Wang ,&nbsp;Rong Zeng ,&nbsp;Lifang Liu ,&nbsp;Shasha Zhu ,&nbsp;Lingsuo Kong ,&nbsp;Jiqian Zhang","doi":"10.1016/j.actbio.2024.04.034","DOIUrl":null,"url":null,"abstract":"<div><p>Postoperative pain (POP) is a major clinical challenge. Local anesthetics (LAs), including amide-type LAs, ester-type LAs, and other potential ion-channel blockers, are emerging as drugs for POP management because of their effectiveness and affordability. However, LAs typically exhibit short durations of action and prolonging the duration by increasing their dosage or concentration may increase the risk of motor block or systemic local anesthetic toxicity. In addition, techniques using LAs, such as intrathecal infusion, require professional operation and are prone to catheter displacement, dislodgement, infection, and nerve damage. With the development of materials science and nanotechnology, various LAs delivery systems have been developed to compensate for these disadvantages. Numerous delivery systems have been designed to continuously release a safe dose in a single administration to ensure minimal systemic toxicity and prolong pain relief. LAs delivery systems can also be designed to control the duration and intensity of analgesia according to changes in the external trigger conditions, achieve on-demand analgesia, and significantly improve pain relief and patient satisfaction. In this review, we summarize POP pathways, animal models and methods for POP testing, and highlight LAs delivery systems for POP management.</p></div><div><h3>Statement of significance</h3><p>Postoperative pain (POP) is a major clinical challenge. Local anesthetics (LAs) are emerging as drugs for POP management because of their effectiveness and affordability. However, they exhibit short durations and toxicity. Various LAs delivery systems have been developed to compensate for these disadvantages. They have been designed to continuously release a safe dose in a single administration to ensure minimal toxicity and prolong pain relief. LAs delivery systems can also be designed to control the duration and intensity of analgesia to achieve on-demand analgesia, and significantly improve pain relief and patient satisfaction. In this paper, we summarize POP pathways, animal models, and methods for POP testing and highlight LAs delivery systems for POP management.</p></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local anesthetic delivery systems for the management of postoperative pain\",\"authors\":\"Mingxu Zhao ,&nbsp;Mengni Zhou ,&nbsp;Pengcheng Lu ,&nbsp;Ying Wang ,&nbsp;Rong Zeng ,&nbsp;Lifang Liu ,&nbsp;Shasha Zhu ,&nbsp;Lingsuo Kong ,&nbsp;Jiqian Zhang\",\"doi\":\"10.1016/j.actbio.2024.04.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Postoperative pain (POP) is a major clinical challenge. Local anesthetics (LAs), including amide-type LAs, ester-type LAs, and other potential ion-channel blockers, are emerging as drugs for POP management because of their effectiveness and affordability. However, LAs typically exhibit short durations of action and prolonging the duration by increasing their dosage or concentration may increase the risk of motor block or systemic local anesthetic toxicity. In addition, techniques using LAs, such as intrathecal infusion, require professional operation and are prone to catheter displacement, dislodgement, infection, and nerve damage. With the development of materials science and nanotechnology, various LAs delivery systems have been developed to compensate for these disadvantages. Numerous delivery systems have been designed to continuously release a safe dose in a single administration to ensure minimal systemic toxicity and prolong pain relief. LAs delivery systems can also be designed to control the duration and intensity of analgesia according to changes in the external trigger conditions, achieve on-demand analgesia, and significantly improve pain relief and patient satisfaction. In this review, we summarize POP pathways, animal models and methods for POP testing, and highlight LAs delivery systems for POP management.</p></div><div><h3>Statement of significance</h3><p>Postoperative pain (POP) is a major clinical challenge. Local anesthetics (LAs) are emerging as drugs for POP management because of their effectiveness and affordability. However, they exhibit short durations and toxicity. Various LAs delivery systems have been developed to compensate for these disadvantages. They have been designed to continuously release a safe dose in a single administration to ensure minimal toxicity and prolong pain relief. LAs delivery systems can also be designed to control the duration and intensity of analgesia to achieve on-demand analgesia, and significantly improve pain relief and patient satisfaction. In this paper, we summarize POP pathways, animal models, and methods for POP testing and highlight LAs delivery systems for POP management.</p></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1742706124002174\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124002174","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

术后疼痛(POP)是一项重大的临床挑战。局麻药(包括酰胺类局麻药、酯类局麻药和其他潜在的离子通道阻滞剂)因其有效性和可负担性而逐渐成为治疗术后疼痛的药物。然而,LAs 的作用持续时间通常较短,通过增加其剂量或浓度来延长作用持续时间可能会增加运动阻滞或全身局部麻醉毒性的风险。此外,使用局部麻醉剂的技术(如鞘内输注)需要专业人员操作,容易发生导管移位、脱落、感染和神经损伤。随着材料科学和纳米技术的发展,人们开发了各种 LAs 输送系统来弥补这些缺点。许多给药系统被设计为在一次给药中持续释放安全剂量,以确保将全身毒性降至最低并延长疼痛缓解时间。此外,LAs 给药系统还可根据外部触发条件的变化控制镇痛持续时间和强度,实现按需镇痛,显著提高疼痛缓解率和患者满意度。在这篇综述中,我们总结了 POP 的途径、动物模型和 POP 测试方法,并重点介绍了用于 POP 管理的 LAs 输送系统。意义声明:术后疼痛(POP)是一项重大的临床挑战。局部麻醉剂(LA)因其有效性和经济性而成为治疗术后疼痛的新兴药物。然而,它们的作用时间短,毒性大。为了弥补这些缺点,人们开发了各种局部麻醉剂给药系统。其设计目的是在一次给药中持续释放安全剂量,以确保将毒性降至最低并延长止痛时间。此外,LAs 给药系统还可控制镇痛持续时间和强度,实现按需镇痛,从而显著提高疼痛缓解率和患者满意度。本文总结了持久性有机污染物的途径、动物模型和持久性有机污染物的测试方法,并重点介绍了用于持久性有机污染物管理的 LAs 给药系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local anesthetic delivery systems for the management of postoperative pain

Postoperative pain (POP) is a major clinical challenge. Local anesthetics (LAs), including amide-type LAs, ester-type LAs, and other potential ion-channel blockers, are emerging as drugs for POP management because of their effectiveness and affordability. However, LAs typically exhibit short durations of action and prolonging the duration by increasing their dosage or concentration may increase the risk of motor block or systemic local anesthetic toxicity. In addition, techniques using LAs, such as intrathecal infusion, require professional operation and are prone to catheter displacement, dislodgement, infection, and nerve damage. With the development of materials science and nanotechnology, various LAs delivery systems have been developed to compensate for these disadvantages. Numerous delivery systems have been designed to continuously release a safe dose in a single administration to ensure minimal systemic toxicity and prolong pain relief. LAs delivery systems can also be designed to control the duration and intensity of analgesia according to changes in the external trigger conditions, achieve on-demand analgesia, and significantly improve pain relief and patient satisfaction. In this review, we summarize POP pathways, animal models and methods for POP testing, and highlight LAs delivery systems for POP management.

Statement of significance

Postoperative pain (POP) is a major clinical challenge. Local anesthetics (LAs) are emerging as drugs for POP management because of their effectiveness and affordability. However, they exhibit short durations and toxicity. Various LAs delivery systems have been developed to compensate for these disadvantages. They have been designed to continuously release a safe dose in a single administration to ensure minimal toxicity and prolong pain relief. LAs delivery systems can also be designed to control the duration and intensity of analgesia to achieve on-demand analgesia, and significantly improve pain relief and patient satisfaction. In this paper, we summarize POP pathways, animal models, and methods for POP testing and highlight LAs delivery systems for POP management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
期刊最新文献
Editorial Board Corrigendum to “Platelets and Hemostatic Proteins are Co-Localized with Chronic Neuroinflammation Surrounding Implanted Intracortical Microelectrodes” [Acta Biomaterialia. Volume 166, August 2023, Pages 278-290] Editorial Board Immunometabolic reprogramming of macrophages with inhalable CRISPR/Cas9 nanotherapeutics for acute lung injury intervention A strong, silk protein-inspired tissue adhesive with an enhanced drug release mechanism for transdermal drug delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1